Classwork 24

- 1. Describe two ways of approximating the instantaneous speed or exact slope of a curve.
- 2. a. Approximate the exact slope of the curve below at the following points using the graph:

i.
$$x = 1$$

ii.
$$x = 5$$

The equation of this graph is

$$y = x + 4\sin x$$

b. Use the chart below to approximate the exact slope at x = 1.

First point		Second point		Δχ	Δy	slope
Х	у	Х	у	Δχ	Ду	Slope
1		2				
1		1.7				
1		1.2				
1		1.1				
1		1.01				
1		1.001				

I think the exact slope is around:

c) Use the chart to approximate the exact slope at x = 5.

First point		Second point		Δχ	۸۷	slope
Х	у	Х	у	ΔΧ	Δу	Slope
5		6				
5		5.5				
5		5.1				
5						
5						
5						

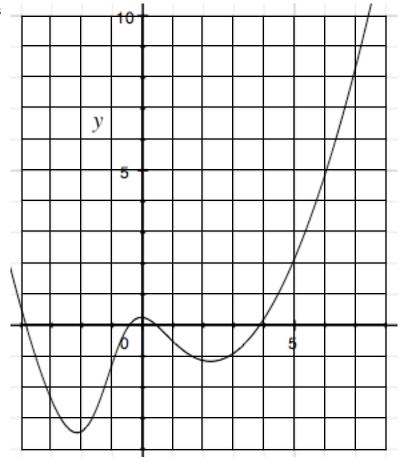
I think the exact slope is around:

d) Approximate the slope at x = 10 by using a series of points near x = 10.

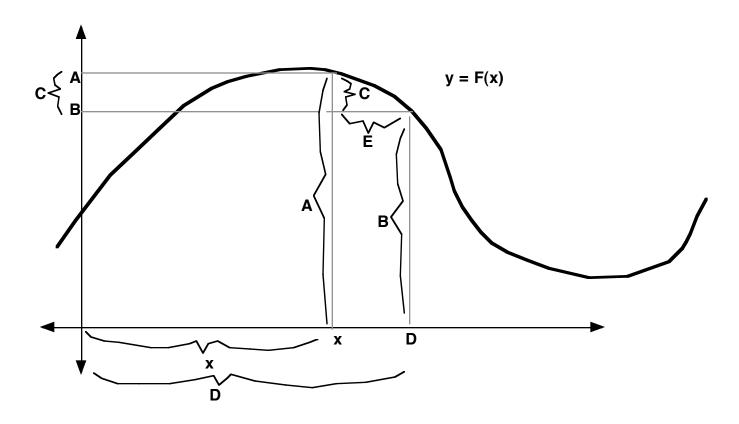
First point		Second point		Δχ		slope
Х	у	Х	у	Δχ	Δy	slope
10						

I think the exact slope is around:

3. Let's say we are dealing with the graph of $f(x) = \frac{\frac{1}{3}x^4 - 5x^2 + 1}{x^2 + 2x + 4}$


a) Investigate the slope around x = 1 using a chart.

First point		Second point		Δχ	Λ f(y)	alana
х	f(x)	х	f(x)	"h"	Δ f(x)	slope


b) Investigate the slope around x = 5 using the chart. This time, however, Δx is given.

First point		Second point		Δx " h "	Δ f(x)	slope	
5				.8			
				.2			
				.05			
				.001			
So in general, in terms of only x , h , and f(x)							
х							

- c) Use the graph to check your answers
- d) Write a limit to express the exact slope at a point ${\bf x}$.

4.Label the drawing to show where each expression below goes (and what it represents). 1. F(x) 2. h 3. F(x + h) 4. x + h 5. F(x + h) - F(x)

Practice Problem

1. Use a small Δx near the point given to find the approximate slope.

a)
$$f(x) = 3x - 2$$
 $x = 2$

b)
$$f(x) = x^2 - 4x + 1$$
 $x = 3$

c)
$$f(x) = \sin x$$
 $x = 5$