Practice Problems

1. Write a limit problem where plugging in gives you $0 \div 0$ but the limit equals 1. **Anything like lim** $\underline{\mathbf{x}}$ will work.

$$x \rightarrow 0 \overline{x}$$

2. Write a limit problem where plugging in gives you $0 \div 0$ but the limit equals ∞ . Anything like $\lim_{x \to \infty} x$ will work.

$$x \rightarrow 0$$
 x^2 with

3. True or false: It is possible for ∞/∞ to give you 0.

True. For example,
$$\lim_{x\to\infty} \underline{x}$$

4. Find $\lim_{x\to 0} \frac{x^3 + 7x^2 - 1/x}{4x^4 + 1/x^2}$ The lowest power is x^2 so divide by x^2 which is the same as multiplying by x^2 .

=>
$$x^5 + 7x^5 - 1x$$
 Now when we plug in 0 we get $0/1 = 0$.

5. Find $\lim_{x\to\infty} 4x^2 - x^3$ If we were to plug in we would get $\infty - \infty$, which is an indeterminate form. So let's factor. We get $x^2(4-x)$. Now plug in and you get ∞ (- ∞) which is clearly = - ∞