Practice Problems

1. Write a limit problem where plugging in gives you $0 \div 0$ but the limit equals 1.

For example,
$$\lim_{x\to 0} \frac{x}{x}$$

2. Write a limit problem where plugging in gives you $0 \div 0$ but the limit equals ∞ .

For example,
$$\lim_{x\to 0} \frac{x}{x^2}$$

3. True or false: It is possible for ∞/∞ to give you 0.

True! For example,
$$\lim_{x\to\infty} x = 0$$

4. Find $\lim_{x\to 0} \frac{x^3 + 7x^2 - 1/x}{4x^4 + 1/x^2}$ The lowest power is x^2 , so divide by that, which is the same thing as multiplying by x^2 . That gives you same thing as multiplying by x^2 . That gives you $x^5 + 7x^4 - 1x$. Now when you plug in 0 you get 0/1 = 0

5. Find lim $4x^2 - x^3$ x->∞

Plugging in gives you ∞ - ∞ , and that is an indeterminate form, so factor. Now you get $x^2(4 - x)$. Now you get ∞ (- ∞) = - ∞

6. Find $\lim_{x \to 6} \sqrt{x^2 + 6x - 4}$ $x \rightarrow 2$

Use the conjugate, $\sqrt{x^2 + 6x} + 4$. On top you get $x^{2} + 6x - 16 = (x + 8)(x - 2)$. On the bottom we have (x - 2)(ugly conjugate). The (x - 2)'s cancel out, so we **get** (x + 8)/(ugly conjugate) = 10/8 = 1.25