Name: _____

Problem Set 4 SHOW ALL WORK FOR CREDIT

You may submit solutions on a separate sheet of paper if you prefer.

Assigned: 2/4/08 Due: 2/15/08 (2 pts off for each day late)

- 1. For each function below, do the following:
 - a) Simplify the function and take the derivative normally.
 - b) Take the derivative of each part of the function and multiply them. ("fake" product rule)
 - c) Use the **real** product rule to find the derivative.

i.
$$y = (2x)(3x)$$

a)

ii.
$$y = (x^2)(1/x^2)$$

a)

iii.
$$y = (2x + 3)(x - 5)$$

iv. Explain why taking the derivative of each "factor" function and multiplying doesn't work.

- 2. Find the derivative of each function first by simplifying and taking the derivative and then by using the chain rule.
 - a) y = (2x + 1)² simplify and take the derivative

use the chain rule

b)
$$y = \sqrt{25x^2}$$

simplify and take the derivative

use the chain rule

use the chain rule

3. Use the product rule and/or chain rule to find the derivative of each function.

a)
$$y = x \cdot \cos x$$

c)
$$y = \cos (7x^2 + \cos x)$$

d)
$$y = \ln (5x + 7)$$

e)
$$y = \frac{\cos x}{\cos x}$$

f)
$$y = \ln x (5x + 7)$$

(Hint: start by writing this as a product...)

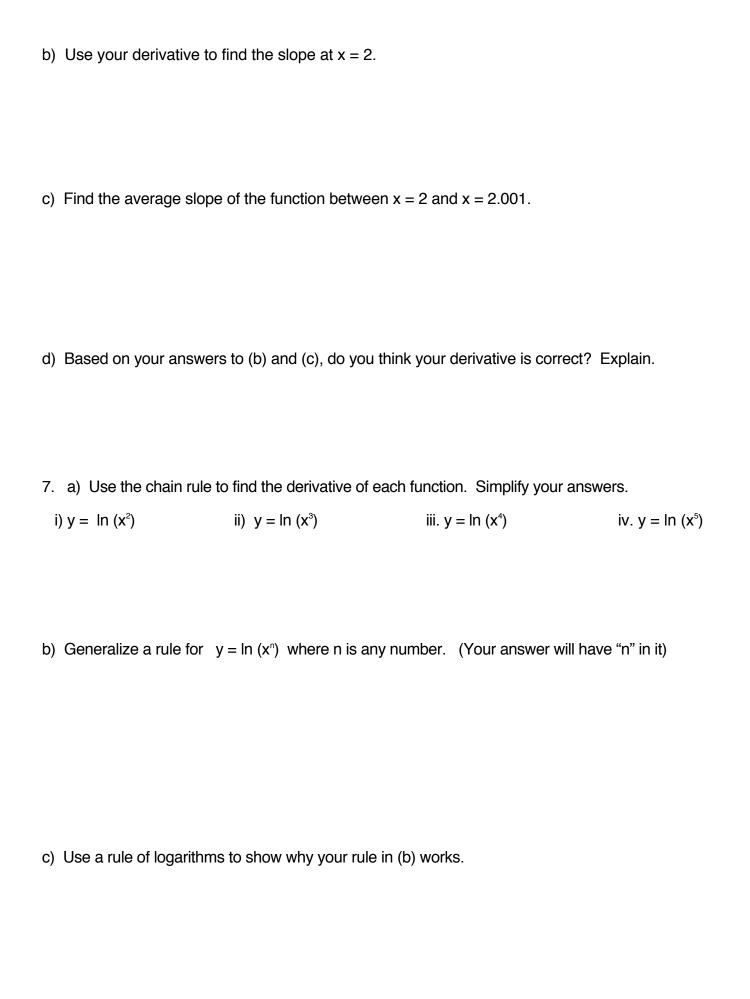
g)
$$y = \cos x (\sin x)$$

h)
$$y = \cos(\sin x)$$

4. a) Does the "quotient rule" work? In other words, if you have a function that is the quotient of two other functions, can you just take the derivative of each part and divide?

In mathematical language, this would be if y = f(x), does y' = f'(x)?

Use sample functions to determine whether this product rule works or not.


b)	Find a " real " o	quotient rule	for	y =	<u>f(x)</u> g(x)
					J (/

HINT: $y \cdot g(x) = f(x)$ Think about the product rule...

5. a) Find the derivative of $y = (f(x))^4$ using the chain rule (your answer will be in terms of f(x) and f'(x))

b) Show that using the **product rule** gives the same answer. (Hint: Start by finding the derivative of $(f(x))^2$)

6. a) Predict the derivative of $y = \sin(\ln(x^3))$

