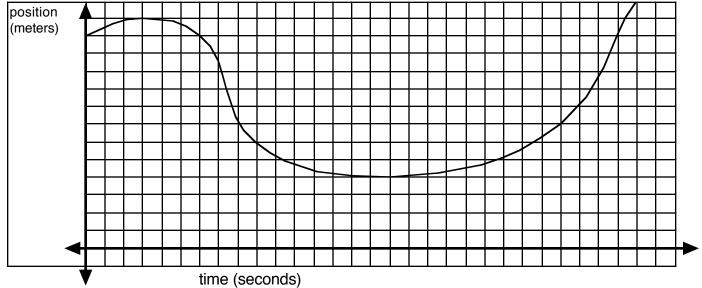
Problem Set 2 SHOW ALL WORK FOR CREDIT

You may submit solutions on a separate sheet of paper if you prefer.

Assigned: 10/23/07

Due: 11/2/07 (2 pts off for each day late)

Work sessions: 10/25 & 11/1, room 421B


- 1. Given $f(x) = x^3 x^2$, find the value of each expression below. Simplify as much as possible.
- f(4) a)

b) f(h)

c) f(x+1)

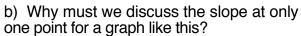
d) f(x + h)

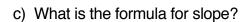
- e) f(a+b+c)
- 2. Explain the relationship between slope and average speed. Use mathematical notation in your answer.
- 3. Use the position vs. time graph below to answer the following questions.

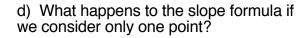
- a). Calculate the average speed of the object over each interval.
 - i) 1 s to 3 s
- ii) 3 s to 8 s
- iii) 8 s to 14 s
- b) Why can't you calculate an instantaneous speed at a single point (instant) using the usual formula of $\Delta d/\Delta t$?

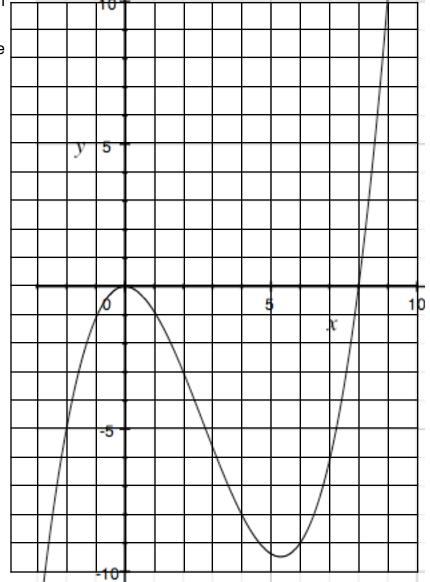
c) Draw a representation of the instantaneous speed of the object at 22 seconds on the graph.	What is
that speed?	

- d) When did the object stop moving?
- e) How do you know the answer to letter (d) by looking at the slope of the graph?
- 4. The graph to the right shows the function


$$f(x) = 1/8x^3 - x^2$$


 a) Use the graph to approximate the slope at each of the following points. Be sure to actually find the slope (write the numerical answer).


i.
$$x = 1$$


ii.
$$x = 6$$

iii.
$$x = -2$$

- e) How can we get around this problem using a table?
- f) Write your answer to (e) as a limit.

g) Fill in the table below to approximate the instantaneous slopes at x = 1, x = 6, and x = -2. For x = -2, fill in your own values to find the slope at exactly x = -2.

	First point Second point		Δx "h"	Δ f(x)	slope	
5		5.1				
		5.05				
		5.01				
		5.001				
6				1		
				.5		
				.1		
				.01		
-2						

L۱	Decedes	10.14 toblo	was diet the	004.101	instantaneo		~ +.
r i i	- based on v	vour lable	predict the	aciliai	Insianianeo	us sione	aı

i.
$$x = 5$$

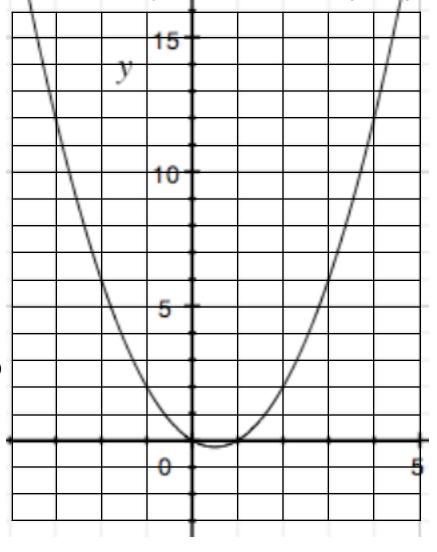
ii.
$$x = 6$$

iii.
$$x = -2$$

i) Write a limit using **only** x, f(x), and h that will give you the exact slope at a point x.

j) Plug in to your answer for (i) for $f(x) = 1/8x^3 - x^2$ and x = 5 and solve for the limit to show that the slope you calculated for x = 5 is correct.

5. Use whatever techniques you would like to fill in the chart below as accurately as possible. However, you must **SHOW ALL OF YOUR WORK**, and if we have already learned about derivatives, **you may**


not use the derivative.

$$f(x) = x^2 - x$$

a) CHART

a) CHAITI	
x = ?	Slope of the graph at that x value
-2	
-1	
0	
1	
2	
3	

WORK: (or attach an extra piece of paper)

- b) Find a formula that will give you the slope at any x-value.
- c) Write a limit for the slope at a point and use it to show your formula in (b) is correct.