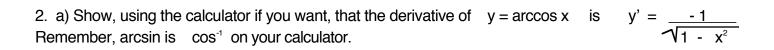
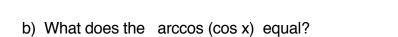
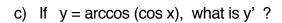
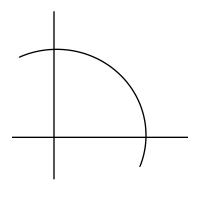
CLASSWORK 78


Review and reinforcement!


- 1. Find the slope of the curve $y = \ln (3x 5)$ at x = 6
- 2. Where does the graph of $y = \ln (3x 5)$ have a slope of 6?


3. Find the derivative of $y = \tan x$.

Three more special derivatives....


- 1. a) Show, using the calculator if you want, that the derivative of $y = \arcsin x$ is $y' = \frac{1}{\sqrt{1 x^2}}$ Remember, arcsin is \sin^{-1} on your calculator.
- b) What does the arcsin (sin x) equal?
- c) If $y = \arcsin(\sin x)$, what is y'?
- d) What identity relates the sine of an angle to its cosine?
- e) Prove that the derivative in part (a) is correct.

d) Prove that the derivative in part (a) is correct.

3. Show that the derivative of $y = \arctan x$ is $\frac{1}{1 + x^2}$

4. Find each derivative.

a)
$$y = \arctan(3x)$$

b)
$$y = \arcsin(e^x)$$

c)
$$y = \arccos(\ln x)$$

d)
$$y = (arctan x)^2$$

A new topic!

- 5. Consider the equation $y^2 = x$.
- a) Sketch a graph of this equation.

b) Is it a function? Explain.

- c) Find <u>dy</u> dx
- d) Fill out the following chart showing the slope at each point of the equation.

x value	y value	SLOPE	x value	y value	SLOPE
(1	, 1)		(1	, -1)	
(4	, 2)		(4	, -2)	
(9	, 3)		(9	, -3)	
(16	, 4)		(16	, -4)	

- e) Is it simpler to relate the slope to the x- value or to the y- value?
- f) Write a relationship between the slope and the y- value. Why does this relationship exist?
- 5. Consider the equation $y^3 1 = x$.
- a) Find <u>dy</u> dx

b) Fill out the following chart showing the slope at each point of the equation.

x value	y value	SLOPE at this pt.	x value	y value	SLOPE at this pt.
(o	, 1)		(124	, 5)	
7	, 2)		(215	, 6)	
(26	, 3)		(342	, 7)	
(63	, 4)		(511	, 8)	

- e) Write a relationship between the slope and the y-value.
- f) Is it simpler to relate the slope to the x- value or to the y- value?
- g) Why might the relationship in part (e) exist?