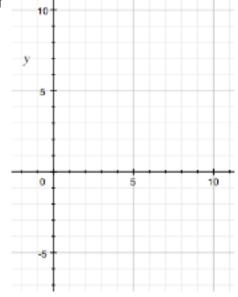
CLASSWORK 73

1. Find the derivative of each function.

a)
$$y = (\ln x)^3$$


b)
$$y = \ln x^3$$

c)
$$y = (\ln x) \cdot x^3$$

- 2. a) Write 12 as "e to a power"
 - b) Use your answer to (a) to find the derivative of $y = 12^x$

- 3. a) Write x as "e to a power"
 - b) Use your answer to (a) to find the derivative of $y = x^{3x+1}$

- 4. A particle is following the curve y = 2x 6. It's x-coordinate is related to time by the equation $x = t^2$
- a) Sketch a graph of what is happening.

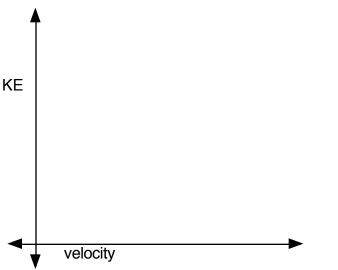
b) Mark the object's position at a few times using the chart below.

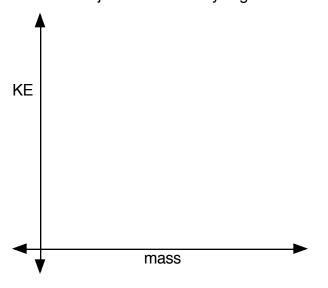
t	x	у
0		
.5		
1		
2		
3		

c)	Find	<u>dy</u>
		dx

d) Find <u>dy</u> dt

e) Find <u>dx</u> dt f) Find the product of your answers to (e) and (c)


5. An object is following the curve $y = e^x$. It's x-coordinate is related to time by the equation $x = 2t^2 + 1$.


a) Find $\frac{dy}{dx}$ b) Find $\frac{dy}{dt}$

c) Find $\frac{dx}{dt}$

d) Find the product of your answers to (a) and (c)

- 6. The kinetic energy of an object is described by $KE = 1/2mv^2$
- a) Sketch the graph of an object's KE as it depends on velocity when the object has a given mass.
- b) Sketch the graph of KE as it depends on the mass of an object when velocity is given.

c)	Find	d	KE
•		d	V

d) Find <u>d KE</u>

- e) How much is the KE increasing for each extra m/s of speed when the velocity is 5 m/s?
- f) Show that your answer to e is correct by comparing the KE of an object going 5 m/s to the KE of an object going 5.001 m/s.

7. Imagine a freshman is sliding across frictionless ice. Let's say we want to apply a force that will increase the freshman's (final) velocity.

The force needed to accelerate the freshman can be described by the formula

$$F = \underline{m(V_f - V_i)}_t$$

In other words, it depends on the mass (m) of the freshman, the final velocity (V_f) that we want him to obtain, the initial velocity (V_i) that he now has, and the time (t) over which our force will act.

b) Find
$$\frac{d F}{d V_f}$$

c) Find <u>dF</u> dt d) Let's define a new variable, g, which is the acceleration of gravity. Find $\frac{dF}{dg}$

8. Let
$$g = \frac{abc^2}{m} + f$$

a) Find <u>dg</u> da b) Find <u>dg</u> dc

c) Find <u>dg</u> dm d) Find dg df