CLASSWORK 66

1. Can we **proove** that the derivative of $\ln x$ is 1/x?

We need these properties of logarithms and natural logarithms:

- 1) $\log a \log b = \log (a/b)$
- 2) $\log(a^b) = b \cdot \log a$

We also need to remember the **definition** of e:

- 2. Sketch a graph of the function $y = e^x$ on the axes below.
- a) Why does the function never hit zero?
- b) Where is the derivative positive? Where is it negative?
- c) Where is the derivative the smallest? Where is the derivative the highest?
- d) Use this information to sketch a graph of the derivative on the same axes.

3. Let's investigate the derivative of $y = e^x$ with numerical methods.

х	$f(x) = e^x$	2nd point		Δу	Δх	slope over the interval	х
-1		(-1.01,)				-1
-0.5		(51,)				-0.5
0		(.01,)				0
0.5		(.51,)				0.5
1		(1.01,)				1
2		(2.01,)				2
3		(3.01,)				3
4		(4.01,)				4

What is the derivative of $y = e^x$?

Use the calculator to show you are right.

4. Find the derivative of $y = x e^x$

5. Find the derivative of $y = e^x + \ln x$

6. Find the derivative of $y = \sin x \cdot e^x$

7. Find the derivative of each function in the chart below using the product rule. What pattern do you notice?

function	derivative	function	derivative
$y = e^x$		$y = (e^x)^2$	
y = sin x		y = sin² x	
y = ln x		$y = (\ln x)^2$	
y = cos x		y = cos² x	
y = e ^x		$y = (e^x)^3$	
y = sin x		y = sin³ x	
y = ln x		$y = (\ln x)^3$	
y = cos x		y = cos³ x	
y = e ^x		$y = (e^x)^4$	
y = sin x		y = sin⁴ x	
y = ln x		$y = (\ln x)^4$	
y = cos x		y = cos ⁴ x	