## **CLASSWORK 63**

1. Find this limit using the calculator. (suggestion: table function & Y1)

$$\lim_{n \to \infty} \frac{n}{\sqrt[n]{n!}}$$

- 2. Find the value of each expression.
- $\log_2 32 =$

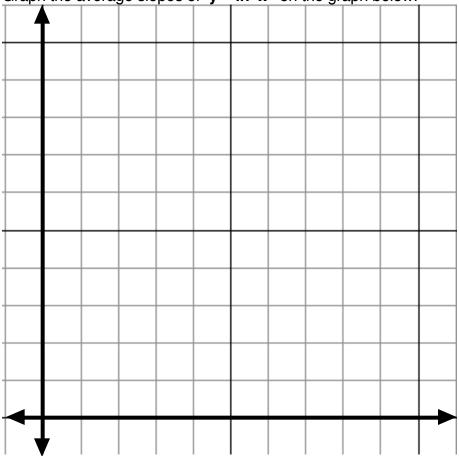
- b)  $\log_4 64 =$  c)  $\log_{25} 5 =$  d)  $\log_{10000} =$
- 3. Find the value of each expression.
  - a)  $\ln 3 =$

- b) In 15 =
- c)  $\ln 200 =$

Now raise **e** to each of the answer powers to show your answer is correct.

- 4. Find the value of each expression.
  - a)  $\ln 1 =$

b) ln e =


c) In e<sup>2</sup>

Explain using an exponential expression why each answer makes sense.

5. Let's investigate the derivative of  $y = \ln x$ . We're going to use small intervals to approximate the derivative at different points.

| х   | $f(x) = \ln x$ | 2nd point near x | Δу | Δх | slope over the interval | х   |
|-----|----------------|------------------|----|----|-------------------------|-----|
| 10  |                | (10.001,         |    |    |                         | 10  |
| 5   |                | (5.001,          |    |    |                         | 5   |
| 4   |                | (4.001,          |    |    |                         | 4   |
| 3   |                | (3.001,          |    |    |                         | 3   |
| 2   |                | (2.001,          |    |    |                         | 2   |
| 1   |                | (1.001, )        |    |    |                         | 1   |
| .5  |                | (0.5001, )       |    |    |                         | .5  |
| .25 |                | (0.2501,         |    |    |                         | .25 |
| .2  |                | (0.2001, )       |    |    |                         | .2  |
| .1  |                | (0.1001,         |    |    |                         | .1  |

Graph the average slopes of  $y = \ln x$  on the graph below.



What is the derivative of  $y = \ln x$ ?

Use the calculator to check this answer.

Explain why no polynomial of the form Cx<sup>n</sup> could give that derivative.

- 6. a) Find the derivative of  $y = x \cdot \ln x$ 
  - b) Use nDeriv on the calculator and check if that function matches your answer.
- c) Use the derivative to find the slope of the graph at x = 3
- d) Find the slope of the function over the interval between x = 3 and x = 3.001

- 7. a) Find the derivative of  $y = \ln x$ 
  - b) Use the nDeriv function on the calculator to check your answer.

Can we **proove** that the derivative of  $\ln x$  is 1/x?

We need these properties of logarithms and natural logarithms:

- 1)  $\log a \log b = \log (a/b)$
- 2)  $\log a^b = b \cdot \log a$

- 8. Sketch a graph of the function  $y = e^x$  on the axes below.
- a) Where is the derivative positive? Where is it negative?
- b) Where is the derivative the smallest? Where is the derivative the highest?

c) Use this information to sketch a graph of the derivative on the same axes.

9. Let's investigate the derivative of  $y = e^x$  with numerical methods.

| х    | $f(x) = e^x$ | 2nd point near x | Δу | Δх | slope over the interval | х    |
|------|--------------|------------------|----|----|-------------------------|------|
| -1   |              | (-1.001,         |    |    |                         | -1   |
| -0.5 |              | (501,            |    |    |                         | -0.5 |
| 0    |              | (.001,           |    |    |                         | 0    |
| 0.5  |              | (.501,           |    |    |                         | 0.5  |
| 1    |              | (1.001,          |    |    |                         | 1    |
| 2    |              | (2.001,          |    |    |                         | 2    |
| 3    |              | (3.001,          |    |    |                         | 3    |
| 4    |              | (4.001, )        |    |    |                         | 4    |

What is the derivative of  $y = e^x$  ?

Use the calculator to show you are right.