Name:

CLASSWORK 61

1. Use the "fake product rule" (just multiplying the two derivatives), the **real** product rule, and then simplifying the function to find the derivatives. **Remember**, the REAL product rule is

Derivative of the 1st · (keep the 2nd) + Derivative of the 2nd · (keep the first)

Function	Fake product rule f'(x) • g'(x)	REAL product rule $f'(x)\cdot g(x) + g'(x)\cdot f(x)$	Simplify and take the derivative normally
y=x•x ⁴			
y=(3x)(x ⁵)			
$y=(x)(1/x^2)$			
y=(x+3)(x+2)			

- 2. a) What is the derivative of $y = \sin x$? Sketch a graph of the function and its derivative.
- b) What is the derivative of $y = \cos x$? Sketch a graph of the function and its derivative.
- c) Use the product rule to find the derivative of $y = \sin x \cdot \cos x$

d) In the calculator, enter
Have the calculator get its derivative like this
Now, enter what you calculated for the derivative

 $Y1 = \sin x \cdot \cos x$ Y2 = nDeriv(Y1, x, x)

Y3 = ...

e) Use calculus to find the EXACT answer for the slope of the curve at $x = \pi/4$
f) Use the table function on your calculator to find the calculator's answer for $x = \pi/4$ Is that the same answer? Explain.
3. a) Use the product rule to find the derivative of $y = x \cdot \sin x$
b) What's the slope of this graph at $x = \pi$?
c) Find the slope of the curve between $x = \pi$ and $x = 3.15$.
4. a) Use the product rule to find the derivative of $y = \sin^2 x$
b) What's the slope of this graph at $x = \pi$?
c) Find the slope of the curve between $x = \pi$ and $x = 3.15$.

5. A new topic..... Find

 $\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n$

using the calculator. What will the part inside the parentheses approach?

What will the exponent approach?

n	$\left(1+\frac{1}{n}\right)^n$

What is this special limit?

6. Find the following sum to the 5th decimal place:

$$\frac{1}{0!}$$
 + $\frac{1}{1!}$ + $\frac{1}{2!}$ + $\frac{1}{3!}$ + $\frac{1}{4!}$ + $\frac{1}{5!}$ + $\frac{1}{6!}$ + $\frac{1}{7!}$...