Classwork 57

- 1. Given the function $y = 1/6x^3 + 4x^2 + 14x 5$
- a) Find its maxes and mins.

b) Find its inflection point.

2. a) An object starts out going 2 m/s at t = 0. At t = 5, the object is going 9 m/s. It is accelerating constantly. Find the object's acceleration.

- b) If the object kept on accelerating like this, what would its speed be at t = 7 seconds?
- c) Find the distance travelled from t = 0 to t = 4.

- 3. Tanasia is driving in Prospect Park at a velocity of 30 m/s. She sees a cute little squirrel in the road ahead and starts breaking so that she doesn't hit it. She starts decelerating at a rate of 6 m/s².
- a) Use the equation relating distance to acceleration:

to plot Tanasia's position on the graph below. Start at (0,0).

						time (s)	position (displacement)	velocity
						0	0	
						-		
←	,				-	•		

- b) Graph the **velocity over time** on the same set of axes.
- c) What is the slope of the velocity curve?
- d) Where is the derivative of the derivative equal to zero?
- e) In physics, what is the second derivative of a position-time graph?

5. An object is moving according to the formula $y = 6/t^2 + 5t^3$ where y represents distance in meters and t represents time in seconds.
a) Find the object's position at t = 4.
b) Find the object's speed at t = 4.
c) Find the object's acceleration at t = 4.
d) When is the object's displacement at a maximum?
e) When is the object's speed at a maximum?
6. An object is moving according to the formula $y = 4/t + 4t^3$ where y represents distance in meters and t represents time in seconds.
a) Find the object's position at t = 2.

b) Find the object's speed at t = 2.
c) Find the object's acceleration at t = 2.
d) When is the object's displacement at a maximum?
e) When is the object's <i>speed</i> at a maximum?
f) Draw a sketch of what is happening.