Classwork 31

- 1. Find the derivative of each function using the definition.
- a) $f(x) = x^2$

b) $f(x) = x^3$

c) f(x) = 7

d) f(x) = 4x

- 2. Find the slope of each function at x = 3
- a)

b)

C)

d)

- 3. Predict the derivative of $y = x^{100}$
- 4. What is the rule for any derivative of the form $y = x^n$?

Prove that this rule works.

5. Find the derivative of $y = x^3 + x^2 + x$.

6. In general, for a function f(x) = g(x) + h(x), the derivative f'(x) =

7. Fill out each chart.

Х	X ³	Δy	х	2x³	Δy	х	3x³	Δy	х	4x³	Δy
0			0			0			0		
1			1			1			1		
2			2			2			2		
3			3			3			3		
4			4			4			4		
5			5			5			5		

What happens to the rate of change when you put a coefficient in front of the function?

- 8. a) Predict the derivative of $y = 5x^3$
 - b) Use the definition to prove that this derivative is correct.

- 9. a) Write a general rule for the derivative of a function $f(x) = Cx^n$
 - b) Prove that this rule is actually correct using the definition of a derivative.

- 10. Find the equation of the tangent line to each point at the given value. Then graph both functions to show you are correct.
- a) Tangent to the equation $y = 2x^3$ at x = 1

b) Tangent to the equation $y = 1/2x^4$ at x = 2

c) Tangent to the equation $y = (x^4)/4$

11. Find the derivative of $f(x) = \frac{1}{x^2}$ using the definition.

Practice Problems

- 1. Find the derivative of $y = 3x^8 + 2x + 5$
- 2. Find the derivative of $y = 7x^4 2x^2 + 10x$
- 3. Find the derivative of $y = \frac{1}{x^4}$