
Classwork 23

- 1. a) Use the distance vs. time graph to approximate the object's exact speed at t = 0
- b) Write an equation for your tangent line.

- c) The original equation is Put both your original equation and the tangent line into the calculator. How well did you do? Zoom in to x = 0.
- d) Let's see if there's another way we could figure out the slope (speed). What's the formula again?
- e) What could we do to get an average speed that is really close to the instantaneous speed at t = 0?

Let's fill in the following chart:

<u>x</u>	À	Slope between this point and (0, 2)
1		
.5		
.1		

1								1
\								/
\							/	
		10-						
	у					/		
						/		
		5						
	/				/			
				/				
		,)					
		0			5			Г
								1

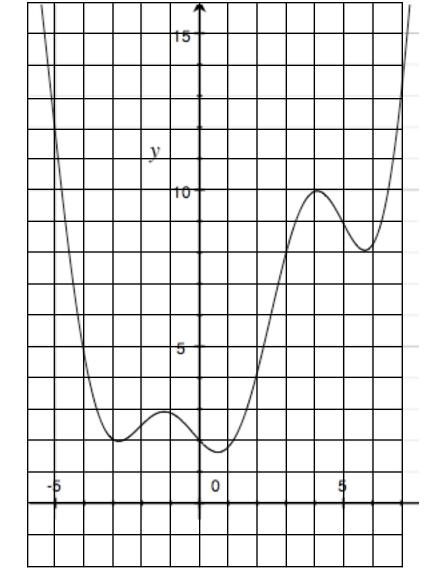
What are we doing to the point that we are using to find a slope with (0, 2)?

Let's say we renamed the difference between the x value we are using and 0 with the variable \mathbf{h} . Write a limit to express what is happenning to \mathbf{h} and what happens to the slope as a result.

2. a) Use the distance vs. time graph below to approximate the object's exact speed at:

i.
$$t = 2$$

ii.
$$t = -5$$


iii.
$$t = 0$$

- b) Write an equation for your tangent line for t = 0.
- c) The original equation is

$$y = \frac{1}{3}x^2 - x\cos x + 2$$

Put both your original equation **and** the tangent line into the calculator. How well did you do? Zoom in to x = 0.

- d) Let's see if there's another way we could figure out the slope (speed). What's the formula again?
- e) Calculate the average speed (average slope) between t = -5 and t = 5.

- f) Draw that average speed on the graph.
- g) Why doesn't this tell us much about what is happenning around t=0?
- h) What could we do to get an average speed that is really close to the instantaneous speed at t = 0?

Let's fill in the following chart for slopes between (0, 0) and a point nearby.

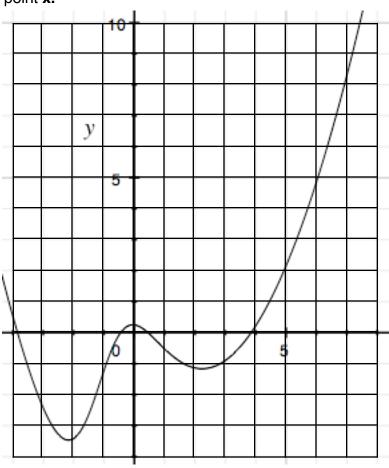
<u>x</u>	У	Δχ	Δχ	<u>Slope</u>
1				
.5				
.1				
.01				
.001				
.0001				

i) What is our approximation approaching? What would you	u say is the exact slope at $x = 0$ ($t = 0$)?
--	---

- j) Why is this answer close to what the tangent line gave us?
- k) What is happenning to Δx ? What is happenning to Δy as a result? Explain why this indicates that calculus is going to be necessary.
- I) Let's say we renamed the difference between the x value we are using and 0 with the variable h. Write a limit to express what is happenning to h.

3. Let's say we are dealing with the graph of
$$f(x) = \frac{\frac{1}{3}x^4 - 5x^2 + 1}{x^2 + 2x + 4}$$

a) Investigate the slope around x = 1 using a chart.


	First point	S	econd point	Δx " h "	Δ f(x)	slope
х	f(x)	Х	f(x)	"h"		

b) Investigate the slope around x = 5 using the chart. This time, however, Δx is given.

First point		Second point		Δx " h "	Δ f(x)	slope	
5				.8			
				.2			
				.05			
				.001			
So in general, in terms of only x , h , and f(x)							
х							

c) Use the graph to check your answers

d) Write a limit to express the exact slope at a point ${\bf x}$.

Practice problem

1. Use a small Δx near the point given to find the approximate slope at that point.

a)
$$f(x) = 3x - 2$$
 $x = 2$

b)
$$f(x) = x^2 - 4x + 1$$
 $x = 3$

c)
$$f(x) = \sin x$$
 $x = 5$