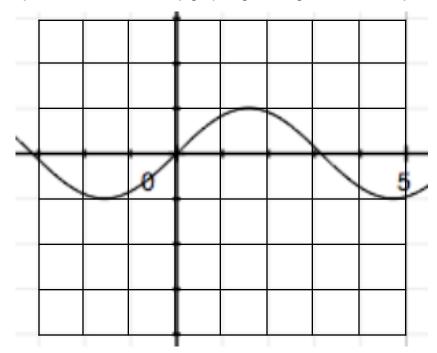
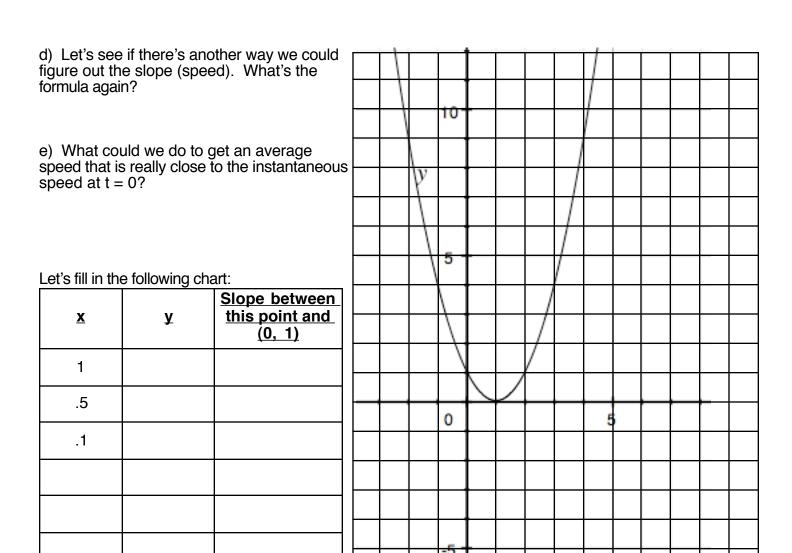
Classwork 21

1. Write the formula for average speed


- 2. What is the difference between average speed and instantaneous speed?
- 3. How can we find the slope of a curve where the angle of the graph is always changing?
- 4. a) Find the slope of the curve below at the following points:

i.
$$x = 0$$


ii.
$$x = 2$$

iii.
$$x = -1$$

- b) What is the equation of the tangent line at x = 0?
- b) Check your answer for x = 0 by graphing the original curve and your tangent line with the calculator.

- 5. a) Use the distance vs. time graph on the next page to approximate the object's exact speed at t = 0
- b) Write an equation for your tangent line.
- c) The original equation is $d = (t-1)^2$. Put both your original equation and the tangent line into the calculator. How well did you do? Zoom in to x = 0.

What are we doing to the point that we are using to find a slope with (0, 1)?

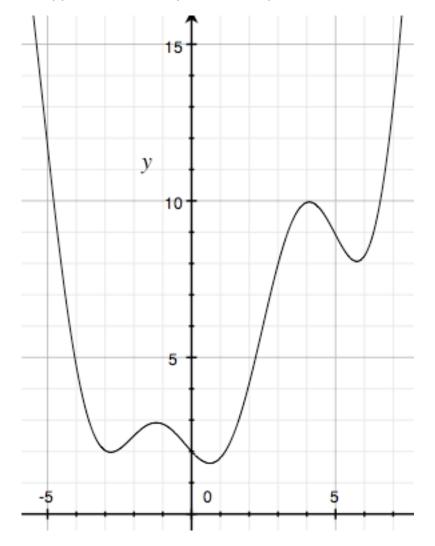
Let's say we renamed the difference between the x value we are using and 0 with the variable \mathbf{h} . Write a limit to express what is happenning to \mathbf{h} and what happens to the slope as a result.

6. a) Use the distance vs. time graph below to approximate the object's exact speed at:

i.
$$t = 2$$

ii.
$$t = -5$$

iii.
$$t = 0$$

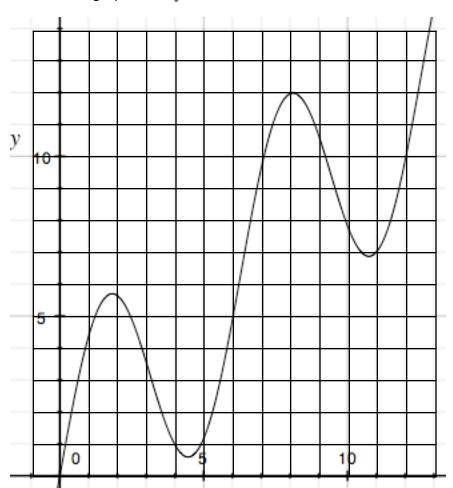

b) Write an equation for your tangent line for t = 0.

$$y = \frac{1}{3}x^2 - x\cos x + 2$$

Put both your original equation **and** the tangent line into the calculator. How well did you do? Zoom in to x = 0.

- d) Let's see if there's another way we could figure out the slope (speed). What's the formula again?
- e) Calculate the average speed (average slope) between t = -5 and t = 5.

- f) Draw that average speed on the graph.
- g) Why doesn't this tell us much about what is happenning around t=0?
- h) What could we do to get an average speed that is really close to the instantaneous speed at t = 0?


Let's fill in the following chart for slopes between (0, 0) and a point nearby.

<u>x</u>	У	Δχ	Δυ	<u>Slope</u>
1				
.5				
.1				
.01				
.001				
.0001				

i) What is our approximation approaching? What would you say is the exact slope at $x = 0$ ($t = 0$)?
j) Why is this answer close to what the tangent line gave us?
k) What is happenning to Δx ? What is happenning to Δy as a result? Explain why this indicates that calculus is going to be necessary.
I) Let's say we renamed the difference between the x value we are using and 0 with the variable h . Write a limit to express what is happenning to h .

Practice problem

1. Use the graph of $y = x + 4 \sin x$ below to answer the following questions.

- a) Use the graph to approximate the slope of the graph at x = 5.
- b) Find the average slope between x = 5 and a point very close to it.
- c) Why do we have to use calculus to find the exact slope at x = 5?