Name:	

Classwork 20

Warm up and review

- 1. Find the limit of $\sqrt{90 + \sqrt{90 + \sqrt{90 + \sqrt{90 \dots}}}}$
- 2. What is the relationship between slope and speed? Why does it exist?
- 3. Why do we need calclulus to find instantaneous speed or the slope at a point?

We will finally finish this question!!!

- 4. Imagine that we had an equation to describe the motion of a fly buzzing around someone else's hot, stuffy classroom. The equation is $d = \frac{1}{8}t^4 \frac{1}{2}t^3 t^2 + t + 12$
- a) Zoom in to precisely x = 2. What happens?

we did this. It becomes a line.

b) Go back to Y= and enter the graph y=-5x+18 into Y2. Graph both of the functions at the same time **without changing your zoom**. What do you see?

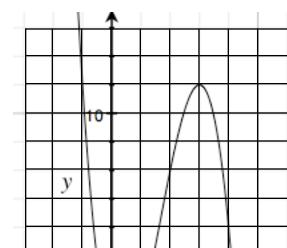
We did this. They become the same line.

g) What would you say is the slope of the graph AT x = 2? -5, the same slope as the line.

Start here. Put the original equation and -5x + 18 into Y = ...

- h) Now zoom out. What do you see now?
 Use WINDOW: x min = 1 x max = 5 y min = -1 y max = 12
- i) Zoom in to x = 0 now using the same "Trace, zoom, trace, zoom" process.
- j) Graph the line y = x + 12 in Y3 without deleting any of the other functions. Now graph again, staying zoomed in to x = 0. What do you see?
- k) What would you say is the slope of the graph AT x = 0?

I) Zoom out. What do you see now?


Úse WINDOW: x min = -2 x max = 2 y min = 10 y max = 14

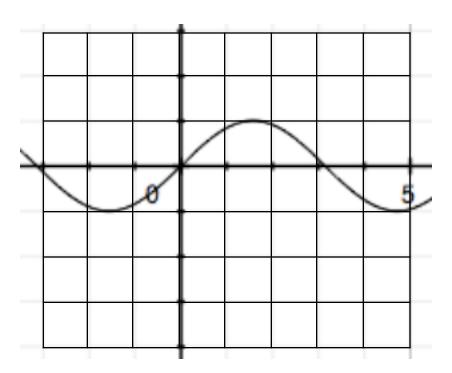
- m) Let's do one more. Zoom into x = 4.
- n) Now enter into Y4 y = x 4. Go back to your zoom. What do you notice?
- o) What would you say is the slope of the graph AT x = 4?
- p) Zoom out. What do you notice?
- q) Describe the relationship between the straight lines and the curve. What is the mathematical name for their relationship?
- r) Let's say that y is in meters and x is in seconds. Based on what you just did, find the **instantaneous** \mathbf{speed} of the fly at :

0

ii)
$$t = 0$$

iii)
$$t = 4$$

- 5. You are given the graph of a function (left) of an object moving over time.
- a) Draw a line on the graph below to approximate the slope at the point where $\mathbf{x} = \mathbf{0}$
- b) What is the intercept of that line?
- c) What is the slope of that line?
 - d) The curve's equation is

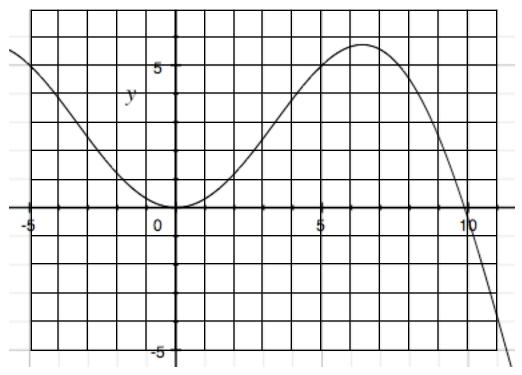

$$y = -x^3 + 5x^2 - 3x + 2$$

Enter this into Y1.

Now enter the equation of your tangent line into Y2.

Zoom into x = 0 to see if the slope you approximated is close.

- 5. a) Find the slope of the curve in the 2nd graph when x = 0.
 - b) Check your answer by graphing the original curve and your tangent line.



- 2. a) Use the distance vs. time graph on the next page to approximate the object's exact speed at t = 0
- b) Write an equation for your tangent line.
- c) The original equation is $d = (t-1)^2$. Put both your original equation and the tangent line into the calculator. How well did you do? Zoom in to x = 0.
- d) Let's see if there's another way we could figure out the slope (speed). What's the formula again?
- e) What could we do to get an average speed that is really close to the instantaneous speed at t = 0?

<u>X</u>	Ā	Slope between this point and (0, 1)		+		<u> </u>	\vdash				+		
1				1		10							
.5													
.1					Y					_/			
.01					1	ļ.,				_			
.001					\vdash	5	L			_			
.0001					<u> </u>	\vdash	┝		/	/			
.00001			\Box			\setminus	\vdash		1				
.000001						\uparrow							
What are we doing to the point that we are using o find a slope with (0, 1)?							\mathcal{I}						
					0					5			
						L.							
Let's say we renamed the difference between the x value we are using and 0 with the variable h. Write a limit to express what is happenning to h.						<u> </u>	_						
rite a limi	t to express wha	t is happenning to h.				<u> </u>	┝						
						-5	┝						
						<u> </u>	-						

Practice problems

- 1. At 2:15 pm the cross country team is 1 mile away from school. At 2:50 pm the team is 4.5 miles away from school. Find the team's average speed.
- 2. Use the graph below of distance versus time to answer the following questions.

- a) What is the object's average speed between t = 0 and t = 5?
- b) Draw a line on the graph to approximate the exact speet at t = 5
- c) Based on your answer to (b), what is the approximate speed at exactly t = 5?