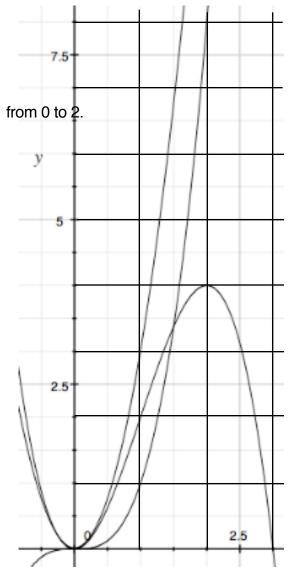
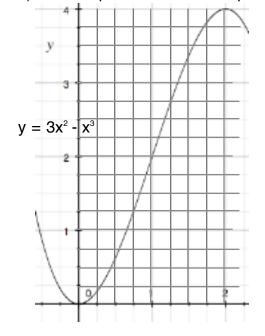
CLASSWORK 104


Find the antiderivative of each function.

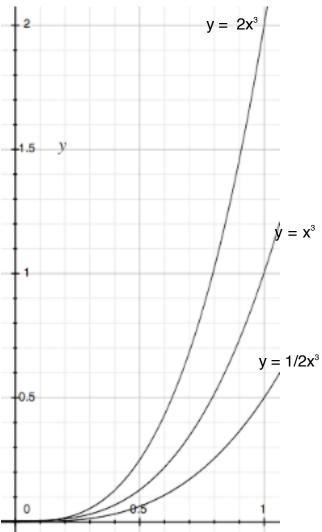
1.
$$y = 3x^{1/2}$$


3.
$$y = \frac{\cos x}{\sin x}$$

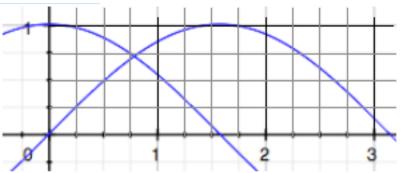
- 4. a) Use calculus to find the area under the curve $y = 3x^2$ from 0 to 2.
- b) Use calculus to find the area under the curve $y = x^3$ from 0 to 2.

c) Use calculus to find the area under the curve $y = 3x^2 - x^3$

d) Use the pictures below to explain your answers.



6.	a)	Find the	area under t	he curve	y = 2x	- 4 fro	om 0 to 4	using calculu	JS.
b)	Exp	olain why	that answer	makes ser	nse (draw	a pictu	ıre).		
7.	a)	Find the	e area under	the curve	$y = x^2 -$	4x fro	m 0 to 4.		
b)	Wh	en does	this area swi	tch from n	egative to	positiv	ve?		
c)	Rela	ate this a	nswer to you	r answer ir	า #5.				
d)	Wh	ere is the	e minimum (of the curv	$e y = x^2$	- 4x ?			
e)	Rela	ate this a	nswer to you	r answers	in #5.				


8. a) Find the area under the curve $y = x^3$ from 0 to 1.

b) Find the area under the curve $y = 2x^3$ from 0 to 1.

- c) Find the area under the curve $y = 1/2x^3$ from 0 to 1.
- d) What does a coefficient do to the area under a given curve? Explain why this makes sense geometrically.

5. a) Find the area under the curve $y = \sin x$ from 0 to π .

What is going on here?

b) Find the area under the curve $y = \cos x$ from 0 to $\pi/2$.

c) Explain the relationship between (a) and (b).

d) Find the area under the curve $y = \sin x$ from 0 to 2π . How could this answer make sense?