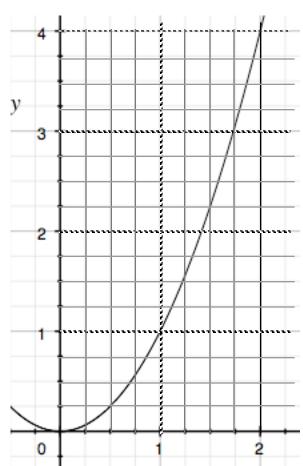
Find the antiderivative of each function.

2.
$$y = 4x^{-5}$$

3.
$$y = \frac{\cos x}{x} - \sin x \ln x$$

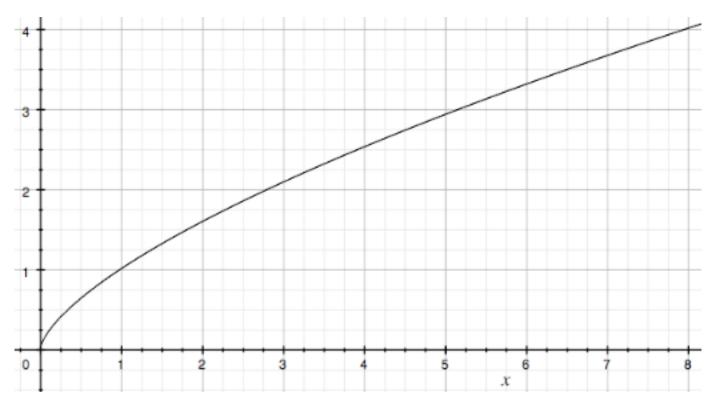
4.
$$y = e^{5x-2}$$


5. a) Estimate the area under the curve $y = x^2$ from 0 to 2 by counting squares on the graph below. Each large square is 1, each small square is 1/16.

Number of large (1) squares : _____

Number of 1/16 squares: _____

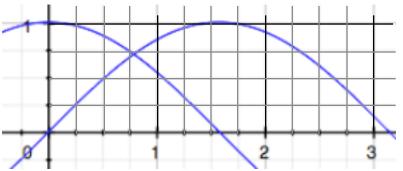
Total area:



c) How far along the x axis would you have to go to have an included area of exactly 1?

6. Use calculus to find the area under the curve $y = \sqrt{x}$ from 0 to 4.

7. Use calculus to find the area under the curve $y = x^{2/3}$ from 0 to 8.



Does your answer seem reasonable based on the graph above?

8. a) Use calculus to find the area under the curve $y = x^{2/3} + 2$ from 0 to 8.

b) Compare your answer to the answer in #4. What effect does the intercept have?

9. a) Find the area under the curve $y = \sin x$ from 0 to π .

What is going on here?

b) Find the area under the curve $y = \cos x$ from 0 to $\pi/2$.

- c) Explain the relationship between (a) and (b).
- d) Find the area under the curve $y = \sin x$ from 0 to 2π . How could this answer make sense?

CLASSWORK 103

1. a) Fill in the chart for the function y = 8x

X	У	A(x)	Δ A(x) (between the two values)	y • Δx	
2					
3					
3.5					
4					
4.5					
4.6					∤
4.7					
4.8					
4.81					
4.82					
4.821					

- b) What happens to Δ A(x) as we take smaller and smaller intervals of x? Why does this make sense?
- c) Let's remind ourselves of how we got the derivative.... What is a derivative? (What does it tell us about a function?)
- d) Why must the antiderivative give us area?