CLASSWORK 102

Find the antiderivative of each function.

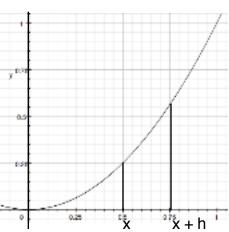
1.
$$y = 5x^{-3} + \cos(2x)$$
 2. $y = 2 \sin x$

$$2. \quad y = \underbrace{2 \sin x}_{\cos^4 x}$$

3.
$$y = \sin x \cos x$$

4. Fill in the chart for the function y = 10

4. Fill in the chart for the function $y = 10$								
Х	у	A(x)	Δ A(x) (between the two values)	10				
0			values)					
1								
2								
3								
3.5								
4								
4.5				V				
4.6								
4.7								
4.8								


How could we express the change in area between any two x values?

5. Fill in the chart for the function y = 6x

Х	у	A(x)	Δ A(x) (between the two values)	† /
1			values)	
2				
3				
3.5				
4				
4.5				-
4.6				/
4.7				
4.8				
4.81				
4.82				
4.821				

What happens to Δ A(x) as we take smaller and smaller intervals of x?

- 6. Let's remind ourselves of how we got the derivative....
- a) What is a derivative? (What does it tell us about a function?)
- b) Use the formal "limit" definition of a derivative to find the derivative of $y = x^2$

7. What happens to the $\Delta A/\Delta x$ as Δx approaches 0 ?

8. Find the area under the curve $y = \sqrt{x}$ from 0 to 5.

