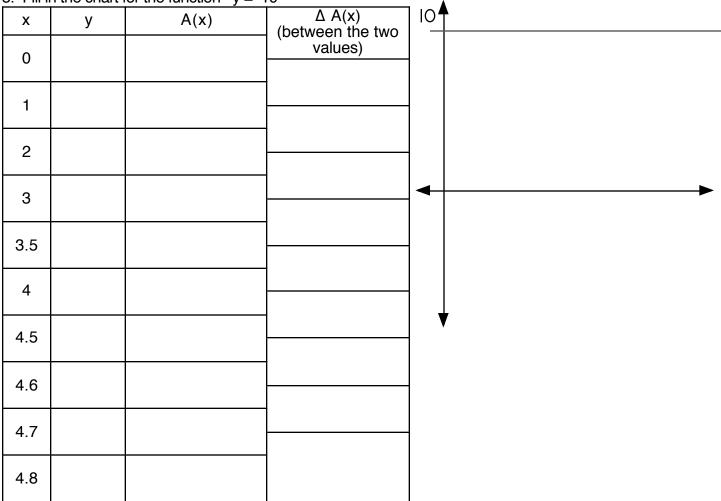
Moving on....

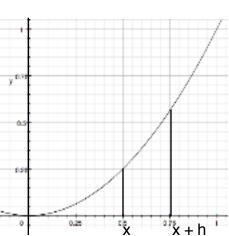

Find the antiderivative of each function.

2.
$$y = -3x^8 + 4$$

3.
$$y = \frac{(\ln x)^4}{x}$$

2.
$$y = -3x^8 + 4$$
 3. $y = \frac{(\ln x)^4}{x}$ 4. $y = \frac{6x^2}{2x^3 - 7}$

5. Fill in the chart for the function y = 10


How could we express the change in area between any two x values?

6. Fill in the chart for the function y = 6x

Х	у	A(x)	Δ A(x) (between the two values)	† /
1			values)	
2				
3				
3.5				
4				
4.5				→
4.6				<i>1</i> ↓
4.7				
4.8				
4.81				
4.82				
4.821				

What happens to Δ A(x) as we take smaller and smaller intervals of x?

- 6. Let's remind ourselves of how we got the derivative....
- a) What is a derivative? (What does it tell us about a function?)
- b) Use the formal "limit" definition of a derivative to find the derivative of $y = x^2$

7. What happens to the $\Delta A/\Delta x$ as Δx approaches 0 ?

8. Find the area under the curve $y = \sqrt{x}$ from 0 to 5.

CLASSWORK 101

- 1. Picking up where we left off...
- a) What's the problem with finding an area when it is created by a curvy graph like $y = x^2$?
- b) What strategy can we use to approximate the area under such a graph?

c) Let's use 20 rectangles to find the area under the curve $y = x^2$.

X	У	width	new rectangle	<u>X</u>	À	width	new rectangle
.05				.55			
.1				6.			
.15				.65			
.2				.7			
.25				.75			
.3				.8			
.35				.85			
.4				9.			
.45				.95			
.5				1			

Total area from 0 to 1 is approximately:

d) Let's use the same process to find the area under the curve $y = x^3$.

<u>X</u>	У	<u>width</u>	<u>new rectangle</u>	<u>X</u>	Ϋ́	width	new rectangle
.05				.55			
.1				.6			
.15				.65			
.2				.7			
.25				.75			
.3				.8			
.35				.85			
.4				.9			
.45				.95			
.5				1			

Total area from 0 to 1 is approximately:

e) What about $y = x^4$?

<u>X</u>	У	width	new rectangle	<u>X</u>	Ϋ́	width	new rectangle
.05				.55			
.1				.6			
.15				.65			
.2				.7			
.25				.75			
.3				.8			
.35				.85			
.4				.9			
.45				.95			
.5				1			

Total area from 0 to 1 is approximately:

What's going on here??