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ANSWERS TO QUESTIONS

Q3.1 No.  Yes.  The points could be widely separated.  In this case, you can only determine the average
velocity, which is       v x= ∆ ∆/ t .

Q3.2 (a) No.  (b) Yes.
In the second case, the particle is continuously changing the direction of its velocity vector.

Q3.3 The speed is constant, not the velocity.

Q3.4 A parabola.

Q3.5 At the time the second ball is launched.  Yes.  1 second.  No.

Q3.6 No.  The acceleration is a maximum in the opposite direction.

Q3.7 Yes.  The top of the mast and the deck have the same horizontal velocity.

Q3.8 No, the projectile with the higher angle will be in the air longer.  You can see this from   R v tx= , where

  vx  is greater for the projectile at the lower angle.

Q3.9 The projectile is in free fall.  Its vertical component of acceleration is the downward acceleration of
gravity.  Its horizontal component of acceleration is zero.

Q3.10 The quantities (b) acceleration and (c) horizontal component of velocity remain constant for a projectile
in the absence of air resistance.

Q3.11 Less than 45°, so that more horizontal distance can be covered early in the motion, before air resistance
has time to have much effect.

Q3.12 Velocity and acceleration both change in direction.

Q3.13 The projectile on the Moon has greater range and reaches greater altitude.  The Apollo astronauts did
the experiment with golf balls.

Q3.14 The horizontal velocity of the coin does not affect its vertical motion, which is identical to the vertical
free fall of the ball.

Q3.15 (a) Drive straight ahead.
(b) Hold the steering wheel still to drive straight ahead or to follow any other path of constant

curvature.

Q3.16 (Answer is the acceleration
vectors, at far right.)

velocity acceleration
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Q3.17

(a) (b)

Q3.18 Let   vx  and 
  
vy  represent its original velocity components.

(a)
    
x v v gx y= ( / ) and 

    
y v gy= 2 2/ .

(b) Its velocity  is horizontal and equal to   vx .
(c) Its acceleration is vertically downward,   −g .  With air resistance, the answers to (a) and (b) would

be smaller.  As for (c), the magnitude would be somewhat larger, because the acceleration would
also have a component horizontally backwards.
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PROBLEM SOLUTIONS

3.1     x(m)     y(m)

0
–3000

  –1270    
–4270 m

– 3600
0

1270     
– 2330 m

(a) Net displacement =     x y2 2+  = 
  

4 87 28 6. . km at  S of W°

(b) Average speed = 
  

20 0 180 25 0 120 30 0 60 0
180 120 60 0

. . . .
.

 m/s  s  m/s  s  m/s  s
 s  s  s

( ) + ( ) + ( )
+ +

 = 
  

23 3.  m/s

(c) Average velocity 
  
= × =4 87 103.  m

360 s     
13 5.  m/s  along R

3.2 (a) For the average velocity, we have

      
v i j i j= ( ) − ( )

−






+ ( ) − ( )
−







= −



 + −





x x y y4 00 2 00
4 00 2 00

4 00 2 00
4 00 2 00

5 00 3 00 3 00 1 50. .
. .

. .
.

. . . .
 s  s  s .  s

 m  m
2.00 s

 m  m
2.00 s

  v  =
    

1 00 0 750. .i j+( ) m/s

 (b) For the velocity components, we have
    
v

dx
dt

ax = = = 1 00.  m/s

and
    
v

dy
dt

ct ty = = = ( )2 0 250.  m/s2

Therefore, 
      
v i j i j= + = ( ) + ( )v v tx y 1 00 0 250. . m/s  m/s2

      
v i jt =( ) = ( ) + ( )2 00 1 00 0 500. . . s  m/s  m/s

and the speed is       v t =( ) = ( ) + ( ) =2 00 1 00 0 5002 2. . . s  m/s  m/s
  
1 12.  m/s
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3.3 (a)   r =
      
18 0 4 00 4 90 2. . .t t ti j+ −( )

(b)   v =
      
( . . ]18 0 4 00 9 80 m/s) [ .  m/s  m/s2i j+ − ( ) t

(c)   a =
    

−( )9 80.  m/s2 j

(d)     r( .3 00 s) =
    
( . ( . )54 0 32 1 m)  mi j−

(e)     v( .3 00 s) =
    
( . ) ( . )18 0 25 4 m/s  m/si j−

(f)     a( .3 00 s) =
    

−( )9 80.  m/s2 j

3.4 (a)
    
v v af i t= +

      
a

v v i j i j
=

−
=

+( ) − −( ) =f i

t
9 00 7 00 3 00 2 00

3 00
. . . .

.     
2 00 3 00. .i j+( ) m/s2

(b)
      
r r v a i j i jf i it t t t= + + = −( ) + +( )1

2
2 1

2
23 00 2 00 2 00 3 00. . . .

    
x t t= +( )3 00 2. m  and 

    
y t t= −( )1 50 2 002. . m

3.5       v i j v i ji = +( ) ( ) = −( )4 00 1 00 20 0 5 00. . . . m/s  and  20.0  m/s

(a)
    
a

v
tx
x= = − =∆

∆
20 0 4 00

20 0
. .

.
 m/s2

  
0 800.  m/s2

    
a

v

ty
y= = − − =

∆
∆

5 00 1 00
20 0

. .
.

 m/s2
  

−0 300.  m/s2

(b)
  
θ = −



 = − ° =−tan

.
.

.1 0 300
0 800

20 6
    

339° + from  axisx

(c) At     t = 25 0.  s
    
x x v t a tf i xi x= + + = + ( ) + ( )( ) =1

2
2 1

2
210 0 4 00 25 0 0 800 25 0. . . . .

  
360 m

    
y y v t a tf i yi y= + + = − + ( ) + −( )( ) =1

2
2 1

2
24 00 1 00 25 0 0 300 25 0. . . . .

  
−72 7.  m

    
θ =







= −



 =− −tan tan

.
.

1 1 6 50
24 0

v

v
y

x   
− °15 2.
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3.6     a j= 3 00. ; m/s2        v ii = 5 00.  m/s;        r i ji = +0 0

(a)
      
r r v af i it t= + + =1

2
2

      
5 00 3 001

2
2. .t ti j+[ ] m

    
v v af i t= + =

      
5 00 3 00. .i j+( )t m/s

(b)
      
t f= = ( ) + ( )( ) = +( )2 00 5 00 2 00 3 00 2 00 10 0 6 001

2
2. . . . . . . s,   mr i j i j

so 
  
xf =

  
10 0.  m , 

  
yf =

  
6 00.  m

      
v i j i jf = + ( ) = +( )5 00 3 00 2 00 5 00 6 00. . . . .  m/s

      
v v vf f xf yf= = + = ( ) + ( ) =v 2 2 2 25 00 6 00. .

  
7 81.  m/s

*3.7 (a) For the x-component of the motion we have
    
x x v t a tf i xi x= + + 1

2
2 .

    
0 01 0 1 80 10 8 107 1

2
14 2. . m  m/s  m/s2= + ×( ) + ×( )t t

    
4 10 1 80 10 10 014 2 7 2×( ) + ×( ) − =− m/s  m/s  m2 t t.

    

t =
− × ± ×( ) − ×( ) −( )

×( )
−1 80 10 4 4 10 10

2 4 10

7 2 14 2

14

.  m/s 1.8 10  m/s  m/s  m

 m/s

7 2

2
  
= − × ± ×

×
1 8 107. 1.84 10  m/s

8 10  m/s

7

14 2

We choose the + sign to represent the physical situation
    
t = ×

×
= × −4 39 10

5 49 10
5

10.
.

 m/s
8 10  m/s

 s14 2

Here
    
y y v t a tf i yi y= + + 1

2
2

  
= + + ×( ) ×( )−0 0 1 6 10 5 49 101

2
15 10 2

. . m/s  s2
  = × −2 41 10 4.  m

So,     
      

r i jf = +( )10 0 0 241. .   mm

(b)
      
v v a i i jf i t= + = × + × + ×( ) ×( )−1 80 10 8 10 1 6 10 5 49 107 14 15 10. . . m/s  m/s   m/s   s2 2

 
    
= ×( ) + ×( ) + ×( )1 80 10 4 39 10 8 78 107 5 5. . . m/s  m/s  m/si i j

 =
    

1 84 10 8 78 107 5. .×( ) + ×( ) m/s  m/si j

(c)
      
v f = ×( ) + ×( ) =1 84 10 8 78 107 2 5 2

. . m/s  m/s
  
1 85 10. × 7  m/s

(d)
    
θ =







= ×
×







=− −tan tan

.

.
1 1

5

7
8 78 10
1 84 10

v

v
y

x   
2 73. °
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3.8 (a) Coyote:
    
∆x at= 1

2
2 ;

    
70 0 15 01

2
2. .= ( )t

Roadrunner:   ∆x v ti= ;     70 0. = v ti

Solving the above, we get   vi =
  

22 9.  m/s  and   t =   3 06.  s

(b) At the edge of the cliff,     v atxi = = =( . )( . ) .15 0 3 06 45 8 m/s

Substituting into 
    
∆y a ty= 1

2
2, we find 

    
− = −( )100 9 801

2
2. t

    t = 4 52.  s

    
∆x v t a txi x= + = ( )( ) + ( )( )1

2
2 1

2
245 8 4 52 15 0 4 52. . . . s  s

Solving,   ∆x =
  

360 m

(c) For the Coyote's motion through the air
  
v v a txf xi x= +   = + =45 8 15 4 52. ( . )

  
114 m/s

    
v v a tyf yi y= + = − =0 9 80 4 52. ( . )

  
−44 3.  m/s

3.9 (a) The mug leaves the counter horizontally with a velocity   vxi  (say).
If time t elapses before it hits the ground, then since there is no
horizontal acceleration, 

  
x v tf xi= . i.e.,

    
t

x

v v
f

xi xi
= = ( )1 40.  m

In the same time it falls a distance of 0.860 m with acceleration
downward of   9 80.  m/s2.

Then  
    
y y v t a tf i yi y= + + 1

2
2 :

    
0 0 860 9 80

1 401
2

2

= + −( )



. .
.

 m  m/s
 m2

vxi

Thus,
    
vxi =

( )( )
=

4 90 1 96. . m/s  m

0.860 m

2 2

  
3 34.  m/s

(b) The vertical velocity component with which it hits the floor is

    
v v a tyf yi y= + = + −( )




= −0 9 80
1 40

4 11.
.

. m/s
 m

3.34 m/s
 m/s2

Hence, the angle θ  at which the mug strikes the floor is given by

    
θ =









 = −



 =− −tan tan

.
.

1 1 4 11
3 34

v

v
yf

xf   
− °50 9.
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*3.10 The mug is a projectile from just after leaving the counter until just before it reaches the floor.
Taking the origin at the point where the mug leaves the bar, the coordinates of the mug at any
time are

    
x v t a tf xi x= + 1

2
2
    = +v txi 0  and

    
y v t a tf yi y= + 1

2
2

    
= −0 1

2
2gt

When the mug reaches the floor, 
  
y hf = − , so 

    
− = −h gt1

2
2

which gives the time of impact as 
    
t

h
g

= 2

(a) Since 
  
x df =  when the mug reaches the floor, 

  
x v tf xi=  becomes

    
d v

h
gxi= 2

giving the initial velocity as
    

v d
g
hxi =

2

(b) Just before impact, the x-component of velocity is still 
  
v vxf xi=

while the y-component is 
    
v v a t g

h
gyf yi y= + = −0

2

Then the direction of motion just before impact is below the horizontal at an angle of

    

θ =










−tan 1
v

v
yf

xf     
=







=−tan

/1 2
2

g h g

d g h     
tan− 





1 2h
d

3.11
    
y v t g tf i= °( ) −sin  3.00 1

2
2 and

    
v v gtyf i= ° −sin .3 00

When 
    
yf = 0 330.  m , 

    
vyf = 0 and     v g ti sin .3 00° =

    
y v

v
g

g
v

gf i
i i= °( ) ° − °





sin .
sin . sin .

3 00
3 00 3 001

2

2

Solving,
    
y

v
gf

i= ° =
2 2 3 00

2
0 330

sin .
.  m

 Therefore,   vi =
  

48 6.  m/s

The 12.6 m is unnecessary information.
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3.12 From Equation 3.16, R = 15.0 m,     vi = 3 00.  m/s,   θmax = °45 0.

∴ 
    
g

v
R
i= = =
2 9 00

15 0
.
.   

0 600.  m/s2

3.13 (a)
    
x v tf xi= = ° =8 00 20 0 3 00. cos . ( . )

  
22 6.  m

(b) Taking y positive downwards, 
    
y v t g tf yi= + 1

2
2

    
yf = °( ) + ( )( ) =8 00 20 0 3 00 9 80 3 001

2
2. sin . . . .

  
52 3.  m

(c)
    
10 0 8 00 20 0 9 801

2
2. . sin . .= °( ) + ( )t t     4 90 2 74 10 0 02. . .t t+ − =

    
t =

− ± ( ) +
=

2 74 2 74 196
9 80

2. .
.   

1 18.  s

3.14 Take the origin at the mouth of the cannon.

  
x v tf xi=     2000 1000 m  m/s= ( )cosθit

Therefore,
    
t

i
= 2 00.  s

cosθ

    
y v t a tf yi y= + 1

2
2 :

    
800 1000 9 801

2
2 m  m/s  m/s2= ( ) + −( )sin .θi t t

    
800 1000

2 00
9 80

2 001
2

2

 m  m/s
 s

cos
 m/s

 s
cos 

2= ( ) 





− ( )



sin
.

.
.θ

θ θi
i i

    
800 2000 19 62 m  m  mcos sin cos .θ θ θi i i( ) = ( ) −

    
19 6 800 2000 12 2. cos cos cos m  m  m+ ( ) = − ( )θ θ θi i i

    384 31360 6400002 4+ +( )cos ( )cosθ θi i     = −( )cos ( )cos4000000 40000002 4θ θi i

    4640000 3968640 384 04 2cos cosθ θi i− + =

    
cos

( ) ( )( )2
23968640 3968640 4 4640000 384

9280
θi =

± −

    cosθi =  0.925 or 0.00984

  θi =
  

22 4. ° ° or 89.4   (Both solutions are valid.)
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3.15 (a) We use Equation 3.14:
    
y x

gx

vf f i
f

i i
= −tan

cos
θ

θ

2

22

With 
    
xf = 36 0.  m ,     vi = 20 0.  m/s, and θ = 53.0°

we find
    
yf = ( ) ° −

( )( )
( ) °( )

=36 0 53 0
9 80 36 0

2 20 0 53 0
3 94

2

2 2
. tan .

. .

. cos .
. m

 m/s  m

 m/s
 m

2

The ball clears the bar by   ( . . )3 94 3 05− = m
  

0 889.  m

(b) The time the ball takes to reach the maximum height is

    
t

v
g

i i
1

20 0 53 0
9 80

1 63= = ° =sin ( . . )
.

.
θ  m/s)(sin

 m/s
 s2

The time to travel 36.0 m horizontally is
    
t

x

v
f

ix
2 =

    
t2

36 0
20 0 53 0

2 99=
°( ) =.

( . cos .
.

 m
 m/s)

 s Since     t t2 1>  
  

the ball clears the goal on its way down

3.16 (a) The time of flight of the first snowball is the nonzero root of
    
y y v t a tf i yi y= + +1

1
2 1

2

    
0 0 25 0 70 0 9 801

1
2 1

2= + ( ) °( ) − ( ). sin . . m/s  m/s2t t
    
t1

2 25 0 70 0
9 80

4 79= ° =( . )sin .
.

.
 m/s

 m/s
 s2

The distance to your target is
    
x x v tf i xi− = = ° =1 25 0 70 0 4 79 41 0( . )cos . ( . ) . m/s  s  m

Now the second snowball we describe by
    
y y v t a tf i yi y= + +2

1
2 2

2

    0 25 0 4 902 2 2
2= −( . )sin ( . ) m/s  m/s2θ t t     t2 25 10= ( . )sin s θ

    
x x v tf i xi− = 2

  41 0 25 0 5 10 1282 2 2 2. ( . )cos ( . )sin ( sin cos m  m/s  s  m)= =θ θ θ θ   0 321 2 2. sin cos= θ θ

Using   sin sin cos2 2θ θ θ=  we can solve
  
0 321 21

2 2. sin= θ

  2 0 6432
1θ = −sin . and   θ2 =

  
20 0. °

(b) The second snowball is in the air for time     t2 25 10 5 10 20 1 75= = ° =( . )sin ( . )sin . s  s  sθ , so you throw
it after the first by

    t t1 2 4 79 1 75− = − =. . s  s
  

3 05.  s



Chapter 3

54

3.17 Consider the motion from original zero height to maximum height h:

    
v v a y yyf yi y f i

2 2 2= + −( ) gives
    
0 2 02= − −( )v g hyi     or

    
v ghyi = 2

Now consider the motion from the original point to half the maximum height:

    
v v a y yyf yi y f i

2 2 2= + −( ) gives
    
v gh g hyh

2 1
2

2 2 0= + −( ) −( )     so
  
v ghyh =

At maximum height,
    
v v v v ghx x yh x= + = +1

2
2 2 1

2
2

Solving,     v ghx = /3

Now the projection angle is
    
θi

yi

x

v

v
gh

gh
= = = =tan tan

/
tan 6-1 -1 -12

3   
67 8. °

*3.18 We interpret the problem to mean that the displacement from fish to bug is 2.00 m at
30°     = ° + ° = +( . ( . ( . ( .2 00 30 2 00 30 1 73 1 00 m)cos   m)sin   m)  m)i j i j.  If the water should drop 0.03 m
during its flight, then the fish must aim it at a point 0.03 m above the bug.  The initial velocity of
the water  then is  directed through the point  with displacement

    1 73 1 03 2 015 30 7. . . . m  m  m  at  ( ) + ( ) = °i j .

For the time of flight of a water drop we have
    
x x v t a tf i xi x= + + 1

2
2

    1 73 0 30 7 0. cos . m = + °( ) +v ti so
    
t

vi
=

°
1 73

30 7
.

cos .
 m

The vertical motion is described by
    
y y v t a tf i yi y= + + 1

2
2

The “drop on its path” is 
    
− = −( ) °







3 00 9 80
1 73

30 7
1
2

2

. .
.

cos .
 cm  m/s

 m2

vi

Thus,
    
vi =

° ×
= ( ) =−1 73 9 80

2 0 03
2 015 12 8 1. .

.
. .

 m
cos30.7

 m/s
 m

 m  s
2

  
25 8.  m/s

*3.19 From Equation 3.12, 
    
x v t v tf xi i i= = ( )cosθ . Therefore, the time required to reach the building a

distance d away is     t d vi i= cosθ .

At this time, the altitude of the water is 
    
y v t a t v

d
v

g d
vf yi y i i

i i i i
= + =







−






1
2

2
2

2
sin

cos cos
θ

θ θ

Therefore the water strikes the building at a height h above ground level of

  
h yf= =

    

d
gd

vi
i i

tan
cos

θ
θ

−
2

22
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3.20 The horizontal kick gives zero vertical velocity to the rock. Then its time of flight follows from

    
y y v t a tf i yi y= + + 1

2
2

    
− = + + −( )40 0 0 0 9 801

2
2. . m  m/s2 t     t = 2 86.  s

The extra time   3 00 2 86 0 143. . . s  s  s− =  is the time required for the sound she hears to travel
straight back to the player.

It covers distance     343 0 143 49 0 40 02 2 m/s  s  m  m( ) = = + ( ). . .x

where x represents the horizontal distance the rock travels.

    x v t txi= = +28 3 0 2.  m
    
∴ = =vxi

28 3
2 86

.
.

 m
 s   

9 91.  m/s

*3.21 (a) For the horizontal motion, we have
    
x x v t a tf i xi x= + + 1

2
2

    24 0 53 2 2 0 m  s= + °( )( ) +vi cos .

  vi =
  
18 1.  m/s

(b) As it passes over the wall, the ball is above the street by
    
y y v t a tf i yi y= + + 1

2
2

  
yf   

= + ( ) °( )( ) + −( )( )0 18 1 53 2 2 9 8 2 21
2

2. . . . m/s sin  s  m/s  s2
  = 8 13.  m

So it clears the parapet by   8 13 7.  m  m− =
  
1 13.  m

(c) Note that the highest point of the ball's trajectory is not directly above the wall.  For the whole
flight, we have from Equation 3.14,

    
y x

g
v

xf i f
i i

f= ( ) −






tan

cos
θ

θ2 2 2
2 or

    
6 53

9 8

2 18 1 532 2
2 m

 m/s

 m/s

2
= °( ) −

( ) °









tan

.

. cos
x xf f

Solving,
    
0 0412 1 33 6 01 2. . m  m−( ) − + =x xf f

and

    

xf =
± − ( )( )

( )−
1 33 1 33 4 0 0412 6

2 0 0412

2

1

. . .

.  m

This yields two results:
    
xf = 26 8 5 44. . m    or     m

The ball passes twice through the level of the roof.

It hits the roof at distance from the wall   26 8 24.  m  m− =
  

2 79.  m
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*3.22 From the instant he leaves the floor until just before he lands, the basketball star is a projectile. His
vertical velocity and vertical displacement are related by the equation 

    
v v a y yyf yi y f i

2 2 2= + −( ).

Applying this to the upward part of his flight gives 
    
0 2 9 80 1 85 1 022= + − −vyi ( . )( . . ) m/s  m2 .  From

this, 
    
vyi = 4 03.  m/s. [Note that this is the answer to part (c) of this problem.]

For the downward part of the flight, the equation gives 
    
vyf

2 0 2 9 80 0 900 1 85= + − −( . )( . . ) m/s  m2

Thus the vertical velocity just before he lands is
    
vyf = −4 32.  m/s

(a) His hang time may then be found from 
  
v v a tyf yi y= + :

    − = + −4 32 4 03 9 80. . ( . ) m/s  m/s  m/s2 t or   t =
  

0 852.  s

(b) Looking at the total horizontal displacement during the leap,

  x v txi=  becomes     2 80 0 852. ( . m  s)= vxi

which yields   vxi =
  

3 29.  m/s

(c)
  
vyi =

  
4 03.  m/s . See above for proof.

(d) The takeoff angle is: 
    
θ =







= 





=− −tan tan
.1 1 4 03v

v
yi

xi

 m/s
3.29 m/s   

50 8. °

(e) Similarly for the deer, the upward part of the flight gives 
    
v v a y yyf yi y f i

2 2 2= + −( ):

    
0 2 9 80 2 50 1 202= + − −vyi ( . )( . . ) m/s  m2 so

    
vyi = 5 04.  m/s

For the downward part, 
    
v v a y yyf yi y f i

2 2 2= + −( )

 yields
    
vyf

2 0 2 9 80 0 700 2 50= + − −( . )( . . ) m/s  m2

and
    
vyf = −5 94.  m/s

The hang time is then found as
  
v v a tyf yi y= + :     − = + −5 94 5 04 9 80. . ( . ) m/s  m/s  m/s2 t

and
    

t = 1 12.  s

*3.23 For the smallest impact angle 
    
θ = −tan ( / )1 v vyf xf , we want to minimize 

  
vyf

and maximize 
  
v vxf xi= .  The final y-component of velocity is related to 

  
vyi

by 
    
v v ghyf yi

2 2 2= + , so we want to minimize 
  
vyi and maximize   vxi . Both

are accomplished by making the initial velocity horizontal. Then   v vxi = ,

    
vyi = 0, and 

    
v ghyf = 2 . At last, the impact angle is

    
θ = =−tan ( / )1 v vyf xf     

tan ( / )−1 2gh v
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3.24 (a)
    
v

x
y

= ∆
∆

=
×( )

( )( )( ) =
2 3 84 10

27 3 24 3600

8π .

.

 m

 d  h/d  s/h   
1 02 103. ×  m/s

(b) Since v is constant and only direction changes,

    
a

v
r

= = ×
×

=
2 3 2

8
1 02 10
3 84 10

( . )
.   

2 72 10 3. × −  m/s2

3.25
    
a

v
rc = = ( ) =
2 220 0

1 06
.
.

 m/s
 m   

377 m/s2

The mass is unnecessary information.

*3.26 a =
    

v
R

2

    T = ( ) =24 3600 86 400 h  s/h  s

    
v

R
T

= = × =2 2 6 37 10
463

6π π( .  m)
86 400 s

 m/s

a =
  

(
.
463

6 37 106
 m/s)

 m

2

×
= 

  
0 0337.  m/s  directed toward the center of Earth.2

3.27 r = 0.500 m;

    
v

r
Tt = = ( ) =2 2 0 500

60 0
10 47

π π .
.

.
 m

 s/200 rev
 m/s

  
10 5.  m/s

    
a

v
R

= = ( ) =
2 210 47

0 5
.
.   

219 m/s inward2

*3.28
    
a

v
rc =
2

    v a rc= = =3 9 8 9 45 16 7( . )( . . m/s  m)  m/s2

Each revolution carries the astronaut over a distance of     2 2 9 45 59 4π πr = ( ) =. . m  m. Then the
rotation rate is

  
16 7

1
.  m/s

 rev
59.4 m





 =

  
0 281.  rev/s
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3.29 We assume the train is still slowing down at the instant in question.

    
a

v
rc = =
2

1 29.  m/s2

    
a

v
tt = =

−( )( )( )
= −∆

∆

40 0 10 1

15 0
0 741

3.

.
.

 km/h  m/km  h/3600 s

 s
 m/s2

    a a ac t= +2 2

  
= ( ) + −( )1 29 0 741

2 2
. . m/s  m/s2 2

at an angle of  
    
tan− ( )1 a at c   = ( )−tan 1 0.741/1.29

  a =  
  
1 48.  m/s  inward and 29.9  backward2 o

3.30 (b) We do part (b) first. The tangential speed is described by 
  
v v a tf i t= +

    0 7 0 1 75. .m/s s= + ( )at so
    

at = 0 400. m/s forward2

(a) Now at      t = 1 25.  s, 
    
v v a tf i t= + = + ( )0 0 4 1 25. . m/s  s2

    
vf = 0 5.  m/s

so 
    
a

v
rc = = ( ) =
2 20 5

0 2
.

.
 m/s

 m   
1 25.  m/s toward the center2

(c)       a a a= + = +r t 0 4 1 25. . m/s  forward  m/s inward2 2

    a = + = ( )−0 4 1 25 1 25 0 42 2 1. .  . / .forward and inward at tanθ

  a =
  
1 31.  m/s  forward and 72.3  inward2 o

3.31     r a= =2 50 15 0. .   m,  m/s2

(a)     a ac = = ° =cos . ( . )(cos )30 0 15 0 30o 2 m/s
  
13 0.  m/s2

(b)
    
a

v
rc =
2

so 
    
v rac

2 2 50 13 0 32 5= = ( ) =. . . / m  m/s  m s2 2 2

    v = =32 5.  m/s
  

5 70.  m/s

(c)     a a at r
2 2 2= +

so 
    
a a at r= − = ( ) − ( ) =2 2 2

15 0 13 0.  .m/s  m/s2 2
  

7 50.  m/s2
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3.32 (a) See figure to the right.

(b) The components of the 20.2 and the   22 5.  m/s2 along the rope together
constitute the centripetal acceleration:

    
ac = ( ) ° − °( ) + ( ) °22 5 90 0 36 9 20 2 36 9. cos . . . cos . m/s  m/s2 2  = 

  
29 7.  m/s2

(c)
    
a

v
rc =
2

so     v a rc= = ( ) =29 7 1 50 6 67. . . m/s  m  m/s tangent to circle2

  v =
  

6 67.  m/s at 36.9  above the horizontal°

*3.33 Total time in still water 
    
t

d
v

= = =2000
1 20.   

1 67 103. × s

Total time = time upstream plus time downstream:
    
tup  s=

−
= ×1000

1 20 0 500
1 43 103

( . . )
.

    
tdown  s=

+
=1000

1 20 0 500
588

. .

Therefore,     ttotal = × + =1 43 10 5883.
  

2 02 103. × s

*3.34 The bumpers are initially   100 0 100 m  km= .  apart.  After time t the bumper of the leading car
travels     40 0. t , while the bumper of the chasing car travels     60 0. t .

Since the cars are side by side at time t, we have

    0 100 40 0 60 0. . .+ =t t , yielding      t = × =−5 00 10 3.  h
  
18 0.  s

*3.35     v = + =150 30 02 2.
  
153 km/h

  
θ = 



 =−tan

.
.

1 30 0
150

 
  
11 3. ° north of west
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*3.36 α = Heading with respect to the shore

β = Angle of boat with respect to the shore

(a) The boat should always steer for the child at heading

  
α = 



 =−tan

.

.
1 0 600

0 800   
36 9. °

(b)     vx = − =20 0 2 50 13 5. cos . .α  km/h

    
vy = =20 0 12 0. sin .α  km/h

  
β = 





=−tan
.
.

1 12 0
13 5

 km/h
 km/h   

41 6. °

(c)
    
t

d

v
y

y
= = = × −0 600

5 00 10 2.
.

 km
12.0 km/h

 h =
  

3 00.  min

*3.37 Identify the student as the S’ observer and the professor
as the S observer. For the initial motion in S’, we have

    

′
′

= ° =
v

v
y

x
tan .60 0 3

Let u  represent the speed of S’ relative to S . Then
because there is no x–motion In S, we can write

    v v ux x= ′ + = 0 so that     ′ = − = −v ux 10 0.  m/s. Hence the
ball is thrown backwards in S’. Then,

    
v v vy y x= ′ = ′ =3 10 0 3.  m/s

Using 
    
v ghy

2 2=  (from Eq. 3.15), we find

    

h =
( )

( ) =
10 0 3

2 9 80

2
.

.

 m/s

 m/s2   
15 3.  m

The motion of the ball as seen by the student in S’ is shown in diagram (b). The view of the
professor in S is shown in diagram (c).
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*3.38 For Alan, his speed downstream is c + v, while his speed upstream is  c – v

Therefore, the total time for Alan is 
    
t

L
c v

L
c v1 =

+
+

−
=

    

2
1 2 2

L c
v c

/
/−

For Beth, her cross-stream speed (both ways) is     c v2 2−

Thus, the total time for Beth is
    
t

L

c v
2 2 2

2=
−

=

    

2

1 2 2

L c

v c

/

/−

Since     1 12 2− <v c/ ,     t t1 2> , or Beth, who swims cross-stream, returns first.

3.39 The satellite is in free fall. Its acceleration is due to gravity and is by effect a centripetal
acceleration.

  a gc = so
    

v
r

g
2

=

Solving for the velocity,
    
v rg= = +( )( )( ) =6400 600 10 8 213  m  m/s2.

  
7 58 103. × m/s

    
v

r
T

= 2π
 and

    
T

r
v

= =
×( )

×
=2 2 7000 10

7 58 10

3

3
π π  m

 m/s.   
5 80 103. × s

    
T = × 



 =5 80 10

1
96 73. . s

 min
60 s

 min

3.40 (a) The moon's gravitational acceleration is the probe's centripetal acceleration:

(For the moon's radius, see end papers of text.)

    
a

v
r

=
2

    

1
6

2

69 80
1 74 10

.
.

 m/s
 m

2( ) =
×
v

    v s= × =2 84 106 2. / m2
  
1 69.  km/s

(b)
    
v

r
T

= 2π

    
T

r
v

= = ×
×

= × =2 2 1 74 10
6 47 10

6
3π π( .

.
 m)

1.69 10  m/s
 s3   

1 80.  h
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3.41 The special conditions allowing use of Equation 3.16 apply.

For the ball thrown at 45°, 
    
D R

v
g

i= =45

2 90sin

For the bouncing ball, 
    
D R R

v
g

v
g

i i= + = + ( )
1 2

2 2
2 2 2sin / sinθ θ

where θ  is the angle it makes with the ground when thrown and when bouncing.

(a) We require:

    

v
g

v
g

v
g

i i i
2 2 22 2

4
= +sin sinθ θ

  
sin 2 4

5
θ =

  
θ = °26 6.

(b) The time for any symmetric
parabolic flight is given by

    
y v t gtf yi= − 1

2
2

    
0 1

2
2= −v t gti isinθ

If     t = 0 is the time the ball is thrown, then 
    
t

v
g

i i= 2 sinθ
 is the time at landing.

So for the ball thrown at   45 0. °
    
t

v
g

i
45

2 45 0= °sin .

For the bouncing ball,
    
t t t

v
g

v
g

v
g

i i i= + = ° + ( ) °
= °

1 2
2 26 6 2 2 26 6 3 26 6. / sin . sin .

The ratio of this time to that for no bounce is
    

3 26 6
2 45 0

1 34
1 41

v g
v g

i

i

sin . /
sin . /

.

.
°
°

= =
  

0 949.

3.42 After the string breaks the ball is a projectile,
and reaches the ground at time t:

    
y v t a tf yi y= + 1

2
2

    
− = + −( )1 20 0 9 801

2
2. . m  m/s2 t so     t = 0 495.  s

Its constant horizontal speed is
    
v

x
tx = = =2 00

4 04
.

.
 m

0.495 s
 m/s

so before the string breaks
    
a

v
rc
x= = ( ) =

2 24 04
0 300
.
.

 m/s
 m   

54 4.  m/s2
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*3.43 (a)
    
y x

g
v

xf i f
i i

f= ( )( ) −tan
cos

θ
θ2 2 2

2

Setting 
    
x df = cosφ , and 

    
y df = sinφ , we have

    
d d

g
v

di
i i

sin tan cos
cos

cosφ θ φ
θ

φ= ( )( ) − ( )
2 2 2

2

Solving for d yields,

    
d

v

g
i i i i=

−[ ]2 2

2
cos sin cos sin cos

cos

θ θ φ φ θ
φ

or   d =
    

2 2

2
v

g
i i icos sin

cos

θ θ φ
φ

−( )

(b) Setting 
    

dd
d iθ

= 0 leads to 
    
θ φ

i = ° +45
2

 and 
    

d
v

g
i

max
sin

cos
=

−( )2

2
1 φ

φ

*3.44 (a) The ice chest floats downstream 2 km in time t, so that     2 km = v tw .  The upstream motion of the
boat is described by     d v vw= −( )15 min . The downstream motion is described by

    d v v tw+ = + −2 15 km  min)( )( . We eliminate     t vw= 2 km/  and d by substitution:

    v v v v vw w w−( ) + = +( ) −( )15 2 2 15 min  km  km  min/

    
v v

v
v

v vw
w

w15 min 15 min  km  km  km 15 min 15 min( ) − ( ) + = + − ( ) − ( )2 2 2

    
v

v
vw

30 min  2 km( ) =

    
vw = =2 km

30 min   
4 00.  km/h

(b) In the reference frame of the water, the chest is motionless. The boat travels upstream for 15 min
at speed v, and then downstream at the same speed, to return to the same point. Thus it travels for
30 min. During this time, the falls approach the chest at speed   vw , traveling 2 km. Thus

    
v

x
tw = = =∆

∆
2 km

30 min   
4 00.  km/h .
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3.45 Refer to the sketch:

(b)     ∆x v txi= ; substitution yields     130 35 0= °( )v ti cos .

    
∆y v t atyi= + 1

2
2  substitution yields

    
20 0 35 0 9 801

2
2. sin . .= °( ) + −( )v t ti

Solving the above gives   t =
  

3 81.  s  ,

(a)   vi =
  

41 7.  m/s

(c)
    
v v gtyf i i= −sinθ     v vx i i= cosθ

At     t = 3 81.  s,
    
vyf = ° − ( )( ) =41 7 35 0 9 80 3 81. sin . . .

  
−13 4.  m/s

    vx = °( ) =41 7 35 0. cos .
  

34 1.  m/s

    
v v vf x yf= + =2 2

  
36 6.  m/s

*3.46 (a)
    
a

v
rc = = ( ) =
2 25 00

1 00
.

.
 m/s

 m   
25 0.  m/s2

  a gt = =
  

9 80.  m/s2

(b) See figure to the right.

(c)
    
a a ac t= + = ( ) + ( ) =2 2 2 2

25 0 9 80. . m/s  m/s2 2
  

26 8.  m/s2

    
φ =







= =− −tan tan
.

.
1 1 9 80

25 0
a
a

t

c

 m/s
 m/s

2

2   
21 4. °

*3.47
    
x v t v tf ix i= = °cos .40 0

Thus, when 
    
xf = 10 0.  m, 

    
t

vi
=

°
10 0

40 0
.

cos .
 m

At this time, 
  
yf  should be   3.05 m  m  m− =2 00 1 05. .

Thus, 
    
1 05

40 0 10 0
40 0

9 80
10 0

40 0
1
2

2

.
sin . .

cos .
.

.
cos .

 m
 m

 m/s
 m2=

°( )
°

+ −( ) °










v
v v

i

i i

From this,   vi =
  
10 7.  m/s
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*3.48 Equation 3.15: 
    
h

v
g

i i=
2 2

2
sin θ

Equation 3.16: 
    
R

v
g

v
g

i i i i i= =
2 22 2sin sin cosθ θ θ

If     h R= /6, Equation 3.15 yields     v gRi isin /θ = 3 (1)

Substituting Equation (1) above into Equation 3.16 gives
    
R

gR v

g
i i=

( )2 3/ cosθ

which reduces to 
    
v gRi icosθ = 1

2
3 (2)

(a) From 
  
v v a tyf yi y= + , the time to reach the peak of the path (where 

    
vyf = 0) is found to be

    
t v gpeak i i= sinθ

Using Equation (1), this gives 
    
t R gpeak = /3

The total time of the ball’s flight is then     
t t R gflight peak= =2 2 3/

(b) At the path’s peak, the ball moves horizontally with speed
    
v v vpeak xi i i= = cosθ

Using Equation (1), this becomes 
  
vpeak =

    
1
2

3gR

(c) The initial vertical component of velocity is 
    
v vyi i i= sinθ

From Equation (1),
  
vyi =

    
gR/3

(d) Squaring Eq. (1) and (2) and adding the results,
    
v

gR gR gR
i i i
2 2 2

3
3

4
13

12
sin cosθ θ+( ) = + =

Thus, the initial speed is   vi =
    

13
12
gR

(e) Dividing Equation (1) by (2) yields

    

tan
sin
cos

/
θ θ

θi
i i

i i

v
v

gR

gR
= =

( )
( )

















=
3

31
2

2
3

Therefore, 
    
θi = ( ) =−tan 1 2

3   
33 7. °

(f) For a given initial speed, the projection angle yielding maximum peak height is     θi = °90 0. . With
the speed found in (d), Equation 3.15 then yields

    
h

gR
gmax

/ sin .
= ( ) °

=
13 12 90 0

2

2

    
13
24

R

(g) For a given initial speed, the projection angle yielding maximum range is     θi = °45 0. . With the
speed found in (d), Equation 3.16 then gives

    
R

gR
gmax

/ sin .
= ( ) °

=
13 12 90 0

    

13
12

R
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*3.49 Measure heights above the level ground.

The elevation   yb  of the ball follows
    
y R gtb = + −0 1

2
2

with   x v ti=   so     y R gx vb i= − 2 22/

(a) The elevation yr of points on the rock is described by     y x Rr
2 2 2+ =

We will have   y yb r=  at x = 0, but for all other x we require
the ball to be above the rock surface as in   y yb r> .

 Then     y x Rb
2 2 2+ >

    
R

gx
v

x R
i

−






+ >

2

2

2
2 2

2

    
R

gx R
v

g x
v

x R
i i

2
2

2

2 4

4
2 2

4
− + + >

    

g x
v

x
gx R
vi i

2 4

4
2

2

24
+ >

If this inequality is satisfied for x approaching zero, it will be true for all x.  If the ball's parabolic
trajectory has large enough radius of curvature at the start, the ball will clear the whole rock:

    
1 2> gR

vi

  
v gRi >

(b) With   v gRi =  and     yb = 0, we have
    
0

2

2
= −R

gx
gR

or     x R= 2

The distance from the rock's base is   x R− =
    
( )2 1− R
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3.50 (a)
    
∆y gt= − 1

2
2 ;   ∆x v ti=

Combine the equations eliminating t:
    
∆ ∆

y g
x

vi
= −







1
2

2

. From this, 
    
∆ ∆

x
y

g
vi( ) = −





2 22

thus 
    
∆ ∆

x v
y

gi= − = − − = × =2
275

2 300
9 80

6 80 103( )
.

.
  

6 80.  km

(b) The plane has the same velocity as the bomb in the x direction.

Therefore, the plane will be 
  

3000 m directly above the bomb  when it hits the ground.

(c) When φ  is measured from the vertical,
    
tanφ = ∆

∆
x
y

therefore, 
    
φ = ∆

∆






= 



 =− −tan tan1 1 6800

3000
x
y   

66 2. °

3.51  The football travels a horizontal distance

    
R

v
g

i i= = ° =
2 22 20 0 60 0

9 80
35 3

sin( ) ( . ) sin( . )
.

.
θ

 m

Time of flight of ball is

    
t

v
g

i i= = ° =2 2 20 0 30 0
9 80

2 04
sin ( . )sin .

.
.

θ
 s

The receiver is ∆x away from where the ball lands and ∆x = 35.3 – 20.0 = 15.3 m

To cover this distance in 2.04 s, he travels with a velocity

    
v = =15 3

2 04
.

.   
7 50.  m/s in the direction the ball was thrown
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*3.52 Equation of bank:     y x2 16= (1)

Equations of motion:   x v ti= (2)

    
y g t= − 1

2
2 (3)

Substitute for t from (2) into (3) 
    
y g

x
vi

= −






1
2

2

2

Equate y from the bank equation to y from the
equations of motion:

    
16 1

2

2

2

2

x g
x
vi

= −


















⇒
    

g x
v

x x
g x

vi i

2 4

4

2 3

44
16

4
16 0− = −







=

From this,     x = 0   or
    
x

v
g

i3
4

2
64= and

    
x =







=4

10
9 80

4

2

1 3

.

/

  
18 8.  m

Also, 
    
y g

x
vi

= −






= − =1

2

2

2
1
2

2

2
9 80 18 8

10 0
( . )( . )

( . )   
−17 3.  m

3.53 (a) While on the incline

    
v v a xf i

2 2 2− = ∆
  
v v atf i− =

    
vf

2 0 2 4 00 50 0− = ( )( ). .

    20 0 0 4 00. .− = t

  
vf =

  
20 0.  m/s   t =

  
5 00.  s

(b) Initial free–flight conditions give us     vxi = ° =20 0 37 0 16 0. cos . .  m/s

and 
    
vyi = − ° = −20 0 37 0 12 0. sin . .  m/s

  
v vxf xi=     since         ax = 0

    
v a y vyf y yi= − + = − −( ) −( ) + −( ) = −2 2 9 80 30 0 12 0 27 12 2∆ . . . .  m/s

    
v v vf xf yf= + = ( ) + −( ) =2 2 2 216 0 27 1. .  

  
31 5.  m/s  at 59.4  below the horizontal°

(c)     t1 5=  s; 
    
t

v v

a
yf yi

y
2

27 1 12 0
9 80

1 54=
−

= − +
−

=. .
.

.  s     t t t= + =1 2   
6 54.  s

(d)     ∆x v txi= = ( ) =1 16 0 1 54. .
  

24 6.  m
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3.54 Consider the rocket's trajectory in 3 parts as
shown in the sketch.  Our initial conditions give:

    
ay = ° =30 0 53 0 24 0. sin . .  m/s2

    ax = ° =30 0 53 0 18 1. cos . .  m/s2

    
vyi = ° =100 53 0 79 9sin . .  m/s

    vxi = ° =100 53 0 60 2cos . .  m/s

The distances traveled during each phase of the
motion are given in the table.

Path #1:
    
vyf − = ( )79 9 24 0 3 00. . . or

  
vyf  = 152 m/s

    
vxf − = ( )60 2 18 1 3 00. . . or

  
vxf  = 114 m/s

    
∆ = ( ) + ( )( ) =y 79 9 3 00 24 0 3 00 3471

2
2. . . .  m

    
∆ = ( ) + ( )( ) =x 60 2 3 00 18 1 3 00 2621

2
2. . . .  m

Path #2:   ax  = 0, 
  
vxf  =   vxi  = 114 m/s

0 – 152 = –(9.80)t or t = 15.5 s

    ∆ = ( ) = ×x 114 15 5 1 77 103. .  m;

    
∆ = ( ) − ( )( ) = ×y 152 15 5 9 80 15 5 1 17 101

2
2 3. . . .

Path #3: 
    
vyf( ) − = −( ) − ×( )2 30 2 9 80 1 52 10. .

    
vyf = −173 m/s

    
v vxf xi= = 114 m/s, since   ax  = 0

    − − = −( )173 0 9 80. t  or t = 17.6 s

    ∆ = ( ) = ×x 114 17 6 2 02 103. .  m

   
 Path Part

   
 

#1 #2 #3

   
 
  
ay 24.0 –9.80 –9.80

   
 
  ax 18.1 0.0 0.00

   
 
  
vyf 152 0.0 –173

   
 
  
vxf 114 114 114

   
 
  
vyi 79.9 152 0.00

   
 
  vxi 60.2 114 114

   
 ∆y 347   1 17 103. ×   − ×1 52 103.

   
 ∆x 262   1 77 103. ×   2 02 103. ×

(a)     ∆ ( ) =y max
  
1 52 103. × m

(b)     t net( ) = + + =3 00 15 5 17 6. . .
  

36 1.  s

(c)     ∆ ( ) = + × + ×x net 262 1 77 10 2 02 103 3. .

    ∆ ( ) =x net
  

4 05 103. × m

   
 t 3.00 15.5 17.6
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3.55 (a)   ∆x v txi= , 
    
∆y v t gtyi= + 1

2
2

    d tcos . . cos .50 0 10 0 15 0° = °( )

and
    
− ° = °( ) + −( )d t tsin . . sin . .50 0 10 0 15 0 9 801

2
2

Solving, d = 
  

43 2.  m and      t = 2.88 s

(b) Since   ax  = 0,

  
vxf  =   vxi= 10.0 cos 15.0° = 

  
9 66.  m/s

    
v v a tyf yi y= + = ° − =10 0 15 0 9 80 2 88. sin . . ( . )

  
−25 6.  m/s

Air resistance would decrease the values of the range and maximum height.

As an airfoil, he can get some lift and increase his distance.

*3.56 For one electron, we have

  
y v tiy= , 

    
D v t a t a tix x x= + ≅1

2
2 1

2
2 , 

  
v vyf yi= , and 

  
v v a t a txf xi x x= + ≅ .

The angle its direction makes with the x-axis is given by

    
θ = = = =− − − −tan tan tan tan1 1 1

2
1

2

v

v

v

a t

v t

a t
y
D

yf

xf

yi

x

yi

x

Thus the horizontal distance from the aperture to the virtual

source is 2D. The source is at coordinate 
  

x D= − .

3.57 Think of shaking down the mercury in an old fever thermometer.  Swing your hand through a
circular arc, quickly reversing direction at the bottom end.  Suppose your hand moves through
one-quarter of a circle of radius 60 cm in 0.1 s.

 Its speed is
  

1
4

2 0 6
9

π( )( )
≅

.  m

0.1 s
 m/s

and its centripetal acceleration is
    

v
r

2 9
0 6

≅ (
.

 m/s)
 m

2

  
~ 102  m/s2

The tangential acceleration of stopping and reversing the motion will make the total acceleration
somewhat larger, but will not affect its order of magnitude.
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3.58 Find the highest firing angle   θH  for which the projectile will clear the mountain peak; this will
yield the range of the closest point of bombardment. Next find the lowest firing angle; this will
yield the maximum range under these conditions if both   θH  and   θL  are   > °45 ;

    x = 2500 m,     y = 1800 m,     vi = 250 m/s.

    
y v t gt v t gtf yi i= − = ( ) −1

2
2 1

2
2sinθ

    
x v t v tf xi i= = ( )cosθ

Thus 
    
t

x

v
f

i
=

cosθ

Substitute into the expression for 
  
yf

    
y v

x

v
g

x

v
x

gx

vf i
f

i

f

i
f

f

i
= ( ) −







= −sin
cos cos

tan
cos

θ
θ θ

θ
θ

1
2

2 2

2 22

but
  

1
12

2

cos
tan

θ
θ= + so

    
y x

gx

vf f
f

i
= − +( )tan tanθ θ

2

2
2

2
1  and

    
0

2 2

2

2
2

2

2= − + +
gx

v
x

gx

v
yf

i
f

f

i
ftan tanθ θ

Substitute values, use the quadratic formula and find

  tan .θ = 3 905 or 1.197, which gives     θH = °75 6.  and     θL = °50 1.

Range 
    
at  mθ θ

H
i Hv

g
( ) = = ×

2
32

3 07 10
sin

.  from enemy ship

  3 07 10 2500 300 2703. × − − =  m  from shore

Range 
    
at  mθ θ

L
i Lv

g
( ) = = ×

2
32

6 28 10
sin

.  from enemy ship

  6 28 10 2500 300 3 48 103 3. .× − − = ×  from shore

Therefore, safe distance is 
  

< 270 m  or 
  

> ×3 48 103. m  from the shore.
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ANSWERS TO EVEN NUMBERED PROBLEMS

2. (a) (1.00 i + 0.750 j)  m/s (b) (1.00 i + 0.500 j)  m/s,   1.12 m/s

4. (a) (2.00 i + 3.00 j)    m/s2 (b)
      
r i j= +( ) + −( )3 00 1 50 22 2. .t t t t m  m

6. (a)
      
r i j= + ( )[ ]5 00 3 001

2
2. .t t  m;        v i j= +[ ]5 00 3 00. . t  m/s

(b) (10.0 m, 6.00 m),  7.81 m/s

8. (a) 22.9 m/s (b) 360 m  from the base of the cliff
(c) v = (114 i – 44.3 j) m/s

10. (a)     v d g h= /2   horizontally (b)     θ = ( )−tan /1 2h d   below the horizontal

12. 0.600   m/s2    down

14. 22.4° or 89.4°

16. (a) 20.0°  (b) 3.05 s

18. 25.8 m/s

20. 9.91 m/s

22. (a) 0.852 s (b) 3.29 m/s (c) 4.03 m/s
(d) 50.8° (e) 1.12 s

24. (a)   1 02 103. ×  m/s (b)   2.72 10  m/s3 2× −    toward the Earth

26. 0.033 7   m/s2  toward the center of the Earth

28. 0.281 rev/s

30. (a) 1.25   m/s2   toward the center (b) 0.400   m/s2   forward
(c) 1.31   m/s2   forward and 72.3° inward

32. (a) See the solution. (b) 29.7   m/s2

(c) 6.67 m/s   at  36.9° above the horizontal

34. 18.0 s

36. (a) 36.9° (b) 41.6° (c) 3.00 min

38.
    
t

L c
v cAlan =

−
2

1 2 2
/
/

, 
    
t

L c

v c
Beth =

−

2

1 2 2

/

/
.  Beth returns first.

40. (a) 1.69 km/s (b) 1.80 h

42. 54.4   m/s2

44. 4.00 km/h
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46. (a) 25.0   m/s2 ;   9.80   m/s2  (b) See the solution.
(c) 26.8   m/s2  inward at 21.4° below the horizontal

48. (a)     2 3R g/ (b)
    
1
2

3gR (c)     gR/3

(d)
    

13
12

gR (e)   33 7. ° (f)
    
13
24

R

(g)
    
13
12

R

50. (a) 6.80 km (b) 3.00 km vertically above the impact point
(c) 66.2°

52. (18.8, –17.3) m

54. (a) 1.52 km (b) 36.1 s (c) 4.05 km

56.   x D= −

58. Safe distances are less than 270 m or greater than   3 48 103. ×  m from the western shore.


