3.1

Q3.2

Q3.3
Q3.4
Q3.5
Q3.6
Q3.7
Q3.8

Q3.9

Q3.10

Q3.1

Q3.12

Q3.13

Q3.14

Q3.15

Q3.16

CHAPTER 3

ANSWERS TO QUESTIONS

No. Yes. The points could be widely separated. In this case, you can only determine the average
velocity, which is v = Ax/ At.

(a) No. (b) Yes.
In the second case, the particle is continuously changing the direction of its velocity vector.

The speed is constant, not the velocity.

A parabola.

At the time the second ball is launched. Yes. 1second. No.

No. The acceleration is a maximum in the opposite direction.

Yes. The top of the mast and the deck have the same horizontal velocity.

No, the projectile with the higher angle will be in the air longer. You can see this from R=v,t, where
v, is greater for the projectile at the lower angle.

The projectile is in free fall. Its vertical component of acceleration is the downward acceleration of
gravity. Its horizontal component of acceleration is zero.

The quantities (b) acceleration and (c) horizontal component of velocity remain constant for a projectile
in the absence of air resistance.

Less than 45°, so that more horizontal distance can be covered early in the motion, before air resistance
has time to have much effect.

Velocity and acceleration both change in direction.

The projectile on the Moon has greater range and reaches greater altitude. The Apollo astronauts did
the experiment with golf balls.

The horizontal velocity of the coin does not affect its vertical motion, which is identical to the vertical
free fall of the ball.

(a) Drive straight ahead.
(b) Hold the steering wheel still to drive straight ahead or to follow any other path of constant

curvature.
(Answer is the acceleration N
vectors, at far right.) Loop Toop 7 4 /
1 2
— oy /I

velocity acceleration
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(a) (b)

Q3.18 Let v, and v, represent its original velocity components.

46

(a)
(b)
(c)

x=v,(v,/g)and y= Uyz/Zg.
Its velocity is horizontal and equal to v,.
Its acceleration is vertically downward, —g. With air resistance, the answers to (a) and (b) would

be smaller. As for (c), the magnitude would be somewhat larger, because the acceleration would
also have a component horizontally backwards.



Chapter 3

PROBLEM SOLUTIONS
3.1 x(m) y(m)
0 - 3600
-3000 0
-1270 1270
4270 m —-2330 m

(a) Netdisplacement = \/xz + y2 =| 4.87 km at 28.6° S of W

(b) Average speed — 20.0 m/s(180 s)+25.0 m/s(120 s)+30.0 m/s(60.0 s)

180 s+120 s +60.0 s

4.87 x10° m

=/ 13.5m/s along R
360 s / &

(c) Average velocity =

3.2 (a) For the average velocity, we have

**********************

r—+7+7+—+—+74 ERRE
r++++R++3600m4
oo S 1

F1800m7+7+7+7+7+7 -+ -
.*’T’T’ 1 3000m _;

,,,,,,,,,,,,,,,,,,,,,,

|— + -+—+—+—+—+—+— -+ -
i o Lo

Ff ,+,+,+,+,+,+,+, -+-
Ny T
+-

-

=|233m/s

. (x(4.00) -~ x(z.oo)Ji N (y(4.00) - y(z.oo))]. _ (5.00 m —3.00 m)i +(3.00 m-150m),

400s-2.00s 4.00s-2.00s 2.00s

v = (100i+0.750) m/s

dx

(b) For the velocity components, we have v, = prialis 1.00 m/s
and v =d—y=2ct=(0.250 m/sz)t
Yoot
Therefore, v=0,d+o,j=

2005 )’

= (1.00 m/s)i +(0.250 m/s”}¢j

v(t=2.00 s)=(1.00 m/s)i+

(0.500 m/s)j

and the speed is | v(t=2.00)|= N(lOO m/s)’

+(0.500 m/s)* = 1.12m/s
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34

3.5
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(e)

(f)

(c)

r= 180t +(4.00t-490#*)

Chapter 3

v= (180 m/s)i+[4.00 m/s-(9.80 m/s?) t]j

a= (—9.80 m/sz) j

r(3.00 s) =

(54.0 m)i — (32.1 m)j

v(3.00 s) =

(18.0 m/s)i—(25.4 m/s)j

a(3.00 s) =

(-9.80 m/s?) j

vy=v;tat

LY ; Vi _ (9.00i + 7.00,';; (()3.00i —2.00j) _| (2.00i+3.00j) m/s?

1 . . 1 . .
r; =1+ Vit +5at” = (3.00i - 2.00§)t + -(2.00i +3.00) £

x=(3.00t+#) m and y=(150¢* -2.00¢) m

v; =(4.00i +1.00j) m/s and v(20.0) =(20.0i—5.00j) m/s

a, = Av, :w m/s? = 0.800 m/s>
.Y 20.0

_Av,  _500-1.00

—¥_ ~0.300 m/s?
VA 20.0 /

m/s?

0= tan_l(_o’?’oo) =-20.6° = 339° from + x axis
0.800

1 1 2
At t=250s Xp = X; + 0yt + 5 a,t” =10.0+4.00(25.0) +(0.800)(25.0)° =

Yy =Y; + 0yt + 20,4 =—4.00+1.00(25.0) + 1 (~0.300)(25.0)*

v _
0=tan| L |= tan_1(6'50) = -15.2°
[ 24.0

360 m

=| =72.7 m




3.6

*3.7

(a)

(b)

(c)

v 5
(d) 6= tan_l(yj = tan_l(m) = 2.73°

Chapter 3

a=3.00jm/s*; v; =5.00im/s; r, = 0i+0j

t=r+vit+ Lar? = [5.00f+3.00%] m

vp=v;+at= (5.00i+3.005) m/s

<1 2. . .
£=2.00's, 1y =5.00(2.00)i + 1 (3.00)(2.00)j = (10.0i + 6.00j) m

SO Xf = 10.0 m Y= 6.00 m

v ¢ =5.00i +3.00(2.00)j = (5.00i +6.00j) m/s

o5 =|vy|= o +0,2 = | (5.00)7 +(6.00) = 7.81m/s

For the x-component of the motion we have Xp =X+ 0t + %axt2.
0.01m=0+(1.80x10” m/s)t+1(8x10"* m/s?)¢’

(4><1o14 m/s2)t2 +(1.80><107 m/s)t—m‘2 m=0

. ~1.80x 107 m/si\/(1.8x107 m/s)2 —4(4><1014 m/sz)(—10_2 m) 18107 £184x107 m/s

2(4x10" m/s’) 8x10™ m/s?
5
We choose the + sign to represent the physical situation t= %Om/; =549x10710 s
8x10"* m/s
Here = Yi+ 0yt + 50,2 =040+ (1.6x10" m/s?)(5.49x 107" s)2=241><10_4 m
Yp=Yi T Oyt ¥y 2\ : :
So, | 1=(10.0i+0241j) mm

vi=v;+at=180x10" m/si+(8x10" m/s? i+1.6x10" m/s”j)(549x107" s}

(1.80x107 m/s)i+(4.39x10° m/s)i+(8.78x10° m/s)j

= (184x107 m/s)i+(8.78x10° m/s);j

‘vf \ = \/(1.84><107 m/s)2 +(8.78><105 m/s)2

1.85%x10” m/s

v 1.84x107

X
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3.9

50

(a)

(c)

Chapter 3

Coyote: Av=at’;  70.0=(15.0)8
Roadrunner: Ax=v;t; 70.0=v;t
Solving the above, we get v; :’ 229m/s and t=3.06s
At the edge of the cliff, v,; = at=(15.0)(3.06) =45.8 m/s
Substituting into Ay = %ay t2, we find -100 = %(—9.80) t*
t=452s
Av=v,t+ a,t* =(45.8)(4.52 5) + 1 (15.0)(4.52 5)°
Solving, Ax =| 360 m
For the Coyote's motion through the air Uyf = Uyj +ay t =45.8+15(4.52) = 114 m/s
vy =0y +a,t=0-9.80(4.52) = —44.3 m/s
The mug leaves the counter horizontally with a velocity v,; (say). +y

If time t elapses before it hits the ground, then since there is no

horizontal acceleration, x; =v,,t. i.e., _
= +X

X 1.40 m N

t = 7f = 7( ) \

Oyi Oyi
xi Xi ‘8

In the same time it falls a distance of 0.860 m with acceleration

downward of 9.80 m/s>.

2
Then yp=y;+v,t+ %ﬂyfzi 0=0.860 m + %(—9.80 m/sz)(MOmJ
Oyi
(4.90 m/ sz)(l.% mz)
Thus, o = | =] 334m/s

0.860 m
The vertical velocity component with which it hits the floor is

1.40 m

—0 . — _ 2
Dy =y +ayt—0+( 9.80 m/s )(3.34 m/s

):—4.11 m/s

Hence, the angle 6 at which the mug strikes the floor is given by

v 3 .
6=tan! e/ . tan_l(wj = -50.9°
Uyf 3.34 I




*3.10

3.11

Chapter 3

The mug is a projectile from just after leaving the counter until just before it reaches the floor.
Taking the origin at the point where the mug leaves the bar, the coordinates of the mug at any

time are
1 1 1
xf:vxit+§axt2:vxit+0 and yfzvyit+5ayt2:0—§gt2

When the mug reaches the floor, yp= —h, so —h= —% th

o . . 2h
which gives the time of impact as t= \/—

8
. 2h

Since x; =d when the mug reaches the floor, x; =v,;t becomes d=v,; \/—
giving the initial velocity as v =d \/ %
Just before impact, the x-component of velocity is still Uyf = Uy

: : 2h
while the y-component is Vyf =0y +a, t=0- g\g‘—

8

Then the direction of motion just before impact is below the horizontal at an angle of

[
- t[gzng an|(2)
Uyf d.g/2h d

Y =0;(sin 3.00°)¢ - %gtz and v, =10;8in3.00° - gt

When y;=0.330m, v, =0 and v;5in3.00°=gt  y;=1v,(sin3.00°) >
8 8
_ v;%sin?3.00°

2g

Solving, Yy =0.330 m

Therefore, v, = 48.6 m/s

The 12.6 m is unnecessary information.

v;5in3.00° 1 (vi sin3.00°

;
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3.14
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From Equation 3.16, R=15.0m, v; =3.00 m/s, 6,,,, =45.0°
v” _9.00 2
g=-L=>""—=/0.600m/s
R 15.0

X/ = 0y; £ = 8.000820.0°(3.00) :\ 226 m ‘

Taking y positive downwards, Yp=1vy,t+ % gt?

: ° 1 2
ys =8.005in20.0°(3.00) + 5 (9.80)(3.00)* = 523 m

10.0 = 8.00(sin20.0°)¢ + %(9.80)1?2 490" +2.74t-10.0=0

2
| 274\ (274) +19
9.80

= 1.18s

Take the origin at the mouth of the cannon.

Xp =0yt 2000 m = (1000 m/s)cos6;t
Therefore, t= 2.00s
cosb;

yr=vyit+,a,f 800 m=(1000 m/s)sin6;t+,(-9.80 m/s’ )

2
800 m = (1000 m /s)sin6] > |- 1 (9.80 m/s?)[ 2222
cosf; ) 2 cos 6;

800 m|(cos” 6;) = 2000 m(sin6; cos6;) ~19.6 m
19.6 m +800 m(cos” §; ) = 2000 m 1 - cos” 6 (cos6})

384 +(31360) cos? 6; + (640000) cos* 6; = (4000000) cos? §; — (4000000) cos* 6;

4640000 cos? 0; — 3968640 cos” 6; + 384 =0

3968640+, (3968640)% — 4(4640000)(384)

cos’ 6;
9280
cosf; = 0.925 or 0.00984
0; = 22.4° or 89.4° (Both solutions are valid.)




3.15

3.16

(a)

(a)

Chapter 3

2

. 8Xy

We use Equation 3.14: =xctanf, - ————

a I l 2le~2 cos0;
With Xp= 36.0 m, v; =20.0 m/s, and 6=53.0°

(9.80 m/5?)(36.0 m)?
we find Yy =(36.0 m)tan53.0° - ) =394 m
2(20.0 m/s)” cos“(53.0°)

The ball clears the bar by (3.94-3.05) m = 0.889 m

The time the ball takes to reach the maximum height is

_ v;sinf; _(20.0 m/s)(sin53.0°)

tl 5 =1.63s
g 9.80 m/s
. . . X¢
The time to travel 36.0 m horizontally is #, = ——
ix
36.0 m . .
ty = =299s Since t, >t | the ball clears the goal on its way down
(20.0 m/s)(c0s53.0°)

The time of flight of the first snowball is the nonzero root of ys =y; +v,t + %uytf

_ 2(25.0 m/s)sin70.0°

0=0+(25.0 m/s)(sin70.0°)#; — ~(9.80 m /s ), t =479s
( )( ) 1 2( ) 1 1 9.80 m/52
The distance to your target is Xp—X; =0yt = (25.0 m/s)co0s70.0°(4.79 s) = 41.0 m
. 1
Now the second snowball we describe by Yr=Y; + 0yt + Euytzz
0=(25.0 m/s)sin6, t, — (4.90 m/s?)t,> t, =(5.10 s)sin 6,
Xf —X; = Uy tz
41.0 m =(25.0 m/s)cos6,(5.10 s)sin8, = (128 m)sin 6, cos 6, 0.321=sin#6, cos6,
Using sin26 = 2sinfcos® we can solve 0.321= %SinZOZ
26, =sin™" 0.643 and 6, = 20.0°

The second snowball is in the air for time t, =(5.10 s)sin6, =(5.10 s)sin20°=1.75 s, so you throw
it after the first by

h—t,=479s-175s= | 3.05s
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*3.18

*3.19

54

Chapter 3

Consider the motion from original zero height to maximum height h:

v” =0, +2a,(yp-y;)  gives 0=10," ~2g(h~0) or vy =+ 28h
Now consider the motion from the original point to half the maximum height:

nyz = vyiz + Zay(yf - y,-) gives vyhz =2¢h+ 2(—g)(%h - 0) so Oy =Agh
At maximum height, Uy = %\/vxz + vyhz = %\/vxz +gh

Solving, v, = gh/3

Now the projection angle is 6, = tan™! Zyxl =tan™ % =tan'\/6 = 67.8°

We interpret the problem to mean that the displacement from fish to bug is 2.00 m at
30° =(2.00 m)cos30° i+ (2.00 m)sin30° j=(1.73 m)i+(1.00 m)j. If the water should drop 0.03 m
during its flight, then the fish must aim it at a point 0.03 m above the bug. The initial velocity of
the water then is directed through the point with displacement
(173 m)i +(1.03 m)j=2.015m at 30.7°.

For the time of flight of a water drop we have Xp =X+ 0yt + %axif2
1.73 m = 0+ (v; c0s30.7°)t +0 $0 __173m
v; c0s30.7°
The vertical motion is described by Y=Y+ 0t + %ayi.‘2
173m Y
The “drop on its path” is -3.00 cm = l(—9.80 m/ 52) o
2 v; c0s30.7°

1.73m 9.80 m/s>

Thus, v; =
c0s30.7° V 2x0.03 m

=2.015 m(12.8 s_l) = 258 m/s

From Equation 3.12, x; = vt =(v; cos6;)t. Therefore, the time required to reach the building a
distance d away is t = d/v; cos6; .

2
At this time, the altitude of the water is Yr=o,t+ Lo 2= v; sin6; d -& d
e v;cosB; | 2\ v;cosb;

Therefore the water strikes the building at a height i above ground level of

gd*

h=vy,;= dtanf;, - —5——
s ' 20i2c050i




3.20

*3.21

(a)

(c)

Chapter 3

The horizontal kick gives zero vertical velocity to the rock. Then its time of flight follows from
Y=Y+ o+ st ~40.0 m =0+0+2(-9.80 m/s?}¢? =286 s

The extra time 3.00 s—2.86 s=0.143 s is the time required for the sound she hears to travel
straight back to the player.

It covers distance (343 m/s)0.143 s=49.0 m = \/x2 +(40.0 m)?

where x represents the horizontal distance the rock travels.

283m _

x=283m=0v,t+0t LUy = 9.91m/s
™ Y286
For the horizontal motion, we have Xp =X+ Ut + %axt2
24 m = 0+1;(c0s53°)(2.2 ) +0
v;= 181m/s
As it passes over the wall, the ball is above the street by Y=Yy +o,t+ %ayt2

yr=0+(18.1m/s)(sin53°)(2.2 )+, (-9.8 m/s’}(2.2'5)*=8.13 m

So it clears the parapet by 8.13 m -7 m :‘ 1.13m ‘

Note that the highest point of the ball's trajectory is not directly above the wall. For the whole
flight, we have from Equation 3.14,

2
g 2 ° 9.8 m/S 2
=(tan;)xs—| —5=—— |x or 6 m = (tan53°)x; — X
vy = (tan6;)x; (ZUizcoszeiJ f ( s [2(18.1 m/s)? cos?53° | /
Solving, (0.0412 m™)x2 ~1.33x; +6 m =0
1.33+1.33% -4 0.0412)(6
and xp= \/ ( . )(6)
2(0.0412m™")
This yields two results: Xp=268m or 544m

The ball passes twice through the level of the roof.

It hits the roof at distance from the wall 268m—-24m=| 279 m
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*3.22 From the instant he leaves the floor until just before he lands, the basketball star is a projectile. His
vertical velocity and vertical displacement are related by the equation vyfz = vyiz +2a,(yr—y;)-

Applying this to the upward part of his flight gives 0= vyf +2(-9.80 m/s?)(1.85—-1.02) m. From
this, vy =4.03 m/s. [Note that this is the answer to part (c) of this problem.]

For the downward part of the flight, the equation gives vyf2 =0+2(-9.80 m/s%)(0.900 —1.85) m
Thus the vertical velocity just before he lands is v, =-432m/s

(a) His hang time may then be found from v, =v,; +4,t:

-432m/s=4.03 m/s+(-9.80 m/s)t or t=| 0.852s
(b) Looking at the total horizontal displacement during the leap,
x =v,; t becomes 2.80 m =v,,(0.852 s)
which yields vy = 3.29m/s
(c) vy = 4.03 m/s |. See above for proof.
v, 1
(d) The takeoff angle is: 6=tan" | L |= tan_1(4'03m/8) =| 50.8°
Vi 3.29m/s

(e) Similarly for the deer, the upward part of the flight gives vyfz = vyiz +2a,(yr—y;):

0=0,”+2(~9.80 m/s*)(2.50 - 1.20) m 50 v, =5.04m/s

For the downward part, vyfz = vyiz +2a,(yr—y;)

yields vyfz =0+2(=9.80 m/s2)(0.700 — 2.50) m
and v, =-594m/s

The hang time is then found as Oy =0y +a bt —5.94 m/s=5.04 m/s+(-9.80 m/s>)t

and t=112s

*3.23 For the smallest impact angle 6 = tan_l(vyf /v45), we want to minimize v,

and maximize v,r =0v,;. The final y-component of velocity is related to v,

by vyf2 = vyiz +2gh, so we want to minimize v,; and maximize v,;. Both
are accomplished by making the initial velocity horizontal. Then v,; =v,

v,; =0,and v, = \/2gh . Atlast, the impact angle is

6= tan_l(vyf / vxf) = tan_l(\fZgh /v)
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27:(3.84 %108 m) -
1.02x10° m/s

o=—=

3.24
Ay

(a)

Since v is

Co® (1.02x10%)%

r

UZ

3.25

.=

(27.3 d)(24 h/d)(3600 s/h)

constant and only direction changes,

2.72%x107° m/s?

3.84x10%

(200 m/s)*
1.06m

377 m/s?

The mass is unnecessary information.

*3.26

2R
0=

T =24 h(3600 s/h)=286400 s

6
_ 27(6.37 x10° m) 463 m/s

T

L _ (463

C637x10°m

3.27

2y

86400 s

m/ 5)2 2 4.
=| 0.0337 m/s° directed toward the center of Earth.

r=0.500 m;

27(0.500 m)

=1047 m/s 10.5m/s

Ut= T

ZJZ

*3.28

~ 60.0 5/200 rev

(10.47)*
05

219 m/s? inward

v=1Jar=13(9.8m/s?)9.45m) =167 m/s

Each revolution carries the astronaut over a distance of 277 =27(9.45 m)=59.4 m. Then the

rotation rate is

16.7 m

1rev
594 m

0.281 rev/s

a5
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3.29 We assume the train is still slowing down at the instant in question.

2
a, =2 _129 m/s?
r

_Ap (400 km/h)(103 m/km)(l h/3600 s)

a = = =-0.741 m/s?
At 15.0s

a=a2+a? = N/(1'29 m/s?) +(-0741m/s?)

at an angle of tan_l(‘ a, ‘/ac) =tan"1(0.741/1.29)

a= 1.48 m/s®inward and 29.9° backward

330  (b) Wedo part (b) first. The tangential speed is described by vy = v; + a;t

0.7m/s=0+a,(1.75s) S0 a; =0.400m/s* forward

(a) Nowat t=1.25s, vf=v,-+att=0+(0.4 m/sz)1.25 s

vf:O.S m/s

2 2
S0 a. = v W = 1.25 m/s? toward the center
2m

() a=a,+a,; =04 m/s? forward +1.25 m/s%inward

a=+/0.4%+1.25* forward and inward at 6 = tan'(1.25/0.4)

a= 1.31m/s? forward and 72.3° inward

3.31 r=250m, a=15.0 m/s?
//
(@) a.=ac0s30.0°=(15.0 m/s?)(cos30°) = 13.0 m/s> ‘/NZ\.SO m_ Ao
2 \
(b) a ="
T .
SO v? = ra, =2.50 m(13.0 m/sz) =325m?/s? a=15.0m/s?

v=+/325m/s=| 5.70m/s

2__2_ 2
(¢ a° =a°+a,

Cle) a :\/az —a,® =\/(15.0 m/sz)2 —(13.0 m/sz) = 7.50 m/s?
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*3.33

*3.34

*3.35

Chapter 3

See figure to the right.

The components of the 20.2 and the 22.5 m/s? along the rope together
constitute the centripetal acceleration:

1. =(22.5 m/s”)c0s(90.0° - 36.9°) + (20.2 m /57 | c0s 36.9° :‘ 29.7 m/s? ‘

2 /
a. = so v=./a.r =4/29.7 m/s*(1.50 m) = 6.67 m/s tangent to circle

N}

v :’ 6.67 m/s at 36.9° above the horizontal ‘

Total time in still water t= 4_2000 1.67x10° s
v 120
. . . 1000 3
Total time = time upstream plus time downstream: ¢ =1.43x10" s

uP = (120 — 0.500)

1000
taown = ————— =588 5
down 1 20+ 0.500
Therefore, total = 143x10% +588 = 2.02x10° s

The bumpers are initially 100 m =0.100 km apart. After time ¢ the bumper of the leading car
travels 40.0¢, while the bumper of the chasing car travels 60.0¢.

Since the cars are side by side at time ¢, we have

0.100 +40.0t = 60.0t, yielding ¢=5.00x 102 h= 180s

0 =~150% +30.0% = 153 km/h

6=tan! (:13200) =| 11.3° north of west
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*3.36 o= Heading with respect to the shore 250 km/h y
—. — — — — — — ] F
B = Angle of boat with respect to the shore
(a) The boat should always steer for the child at heading
0.600

km

N,

o= tan_l(o'wo) = 36.9°
0.800

(b) ©v,=20.0cosax—2.50=13.5 km/h

<«— 0.800 km —»‘

v, = 20.0sinx =12.0 km/h

B= tan_l(lz'Okm/h) - 416°

13.5 km/h
d
(© t=v - 0000KM _5450.102 h=| 3.00 min
v, 120km/h
*3.37 Identify the student as the §” observer and the professor
as the S observer. For the initial motion in S’, we have
v _
4 = tan60.0°=+3
UX

Let u represent the speed of S relative to S. Then
because there is no x-motion In S, we can write
v, =0, +u=0 so that v, =-u=-10.0 m/s. Hence the
ball is thrown backwards in S’. Then,

v, =70, =+/3|v.|=10.043 m/s

y

’
Ux

Using Uyz =2gh (from Eq. 3.15), we find

(10.0'\53 m/s)2
h= " ) 153 m
2(9.80 m/s2)

The motion of the ball as seen by the student in S’ is shown in diagram (b). The view of the
professor in S is shown in diagram (c).
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*3.38 For Alan, his speed downstream is ¢ + v, while his speed upstreamis ¢—v
. . L L 2L
Therefore, the total time for Alan is t = + = 2/ ¢ 5
c+v c¢c—-v | 1-v"/c

For Beth, her cross-stream speed (both ways) is \ 2_v

2L 2L/c

b= = ——
V2 —? \/1—02/c2

Thus, the total time for Beth is

Since 1-v%/c%* <1, t; > t,, or Beth, who swims cross-stream, returns first.

3.39 The satellite is in free fall. Its acceleration is due to gravity and is by effect a centripetal
acceleration.
02
a.=g S0 =3
Solving for the velocity, 0 =g = (6400 +600)(10° m)(8.21 m/s?) = 7.58x10° m/s
o 2mr 27(7000x10° m) 5
v="n and T=—-= 3 =| 5.80x10° s
T v 7.58x10° m/s
T =5.80x10° s(l mm) =96.7 min
60s
3.40 (a) The moon's gravitational acceleration is the probe's centripetal acceleration:

(For the moon's radius, see end papers of text.)

2 1 ) 272
a=— (980 m/s" )= ————
r 6( ) 1.74x10° m

v=12.84x10° m2/s® = 1.69 km/s

2rr 72w _ 21(1.74x10° m)

= - =647x10°s= 1.80 h
T v 1.69%x10° m/s
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(a)

Chapter 3

The special conditions allowing use of Equation 3.16 apply.

For the ball thrown at 45°, D=Ry5 =

For the bouncing ball, D=R;+R,

0,2 sin90

07 sin26 N (0;/2)*sin26

8

8

where 6 is the angle it makes with the ground when thrown and when bouncing.

We require: P
—~ ~ -
2 2 2. “ o
v; _v;sin20  v; sin260 - AN
s g g /AH#'#_“\\\ PN
A45O \, ~a
in20=> | 0=266° o
sin26 = 2 =26. b D .
The time for any symmetric
parabolic flight is given by
1 .2
Yr=vyit =58t
. 1 2
0=v;sin6;t — 58t
If t+=0 is the time the ball is thrown, then t = 20;sin6; is the time at landing.
8
So for the ball thrown at 45.0° tys = 20;5in45.0°
26.6° 2(v; /2)sin26.6° ;5in26.6°
For the bouncing ball, t=t+t, = 20;26.6 + (0;/2)sin _ 3v;5in26.6
8 8 8
The ratio of this time to that for no bounce is 30, s?n 266°/8 _ 134 0.949
2v;sin45.0°/ ¢ 141
After the string breaks the ball is a projectile,
and reaches the ground at time #: Yr =0yt + %ayt2
~120 m =0+ (-9.80 m/s?)#> 50 t=0.495 s
Its constant horizontal speed is v, = x_200m_ 404 m /s
t 049s
2 2
so before the string breaks a, = I o (4.04 m/s)” = 54.4m/s’
r 0.300 m
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Chapter 3

= (tan®,)x;)- ——<——x/ -
Yf ( l)( f) 27]1'2C0829,- f -
Vi . d
Setting x =dcos¢, and y; =dsing, we have [)
ax
dsing = (tan6;)(dcos¢) - ———(dcos¢)”
o= (tan6)dcoso) 5 (dcoso)
Solving for d yields,
g 27]1-2 Cosai[sin 0; cos¢ —sin¢ cos 01-]
gcoszd)
20;% cos6; sin(6; —
op o 20icos ; sin(6; — )

g cos? loj

2 .
2(1=

Setting % =0 leads to| 6, =45° +g and| d,, = vl(szlggb)
i gcos

The ice chest floats downstream 2 km in time ¢, so that 2 km =v,,¢t. The upstream motion of the
boat is described by d=(v-v,)15min. The downstream motion is described by
d+2 km = (v+7v,)(t—15 min). We eliminate =2 km /v, and d by substitution:

(v-2,)15 min+2 km = (v +7v,,)(2 km/ v, — 15 min)

v(15 min) - v,,(15 min) + 2 km = 2 2 km+2km- v(15 min) — v,,(15 min)

U

v(30 min) = 2 2km

U

_ 2km

0, =
30 min

=‘ 4.00 km/h

w

In the reference frame of the water, the chest is motionless. The boat travels upstream for 15 min
at speed v, and then downstream at the same speed, to return to the same point. Thus it travels for
30 min. During this time, the falls approach the chest at speed v,,, traveling 2 km. Thus

_Ax_ 2km

= = =/ 4.00 km/h .
%0 = Af T 30 min
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3.45 Refer to the sketch:

(b)

(a)
(c)

*3.46 (a)

(c)

*3.47

64
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Ax = v,;t; substitution yields 130 = (v; cos 35.0°)¢
Ay =0, t+ %at2 substitution yields

. 5 1
20.0 = (v;5in35.0°)¢ + (-9.80)¢?

Solving the above gives = 3.81s |,

v; = 41.7 m/s
Vyf = 0;SIn6; — gt v, =7; C0os6;
At t=3.81s, v,r =41.7sin35.0° - (9.80)(3.81)= —13.4m/s
vy =(41.7c0835.0°) = 34.1m/s
v = \/vi +v§f = 36.6 m/s
2 2
ac=v—=7(5'00m/s) = 25.0m/s’ RN
r 1.00 m id SO

/ \
2 / \
a,=¢= 9.80m/s // \\
25.0 25.0
See figure to the right. ¢ = < 9
| |
| |

a=a+a? = \f(zs.o m/ 52)2 +(9.80m /52)2 =W‘ 9.80_ 9.80
/7

~ - _ e
2 ~ -
¢=tant| 2 | = tan*lm = 21.4°
a, 25.0m/s
Xf = Uixt = Ul'tCOS4O.OO
Thus, when Xp = 10.0 m, = _100m
v; c0s40.0°
At this time, y; should be 3.05m-2.00m=1.05m
2
:5in40.0°)10.
Thus, l.OSm:(v'sm 0.0 ) OOm+1(—9.80 m/sz) _100m
v; c0s40.0° 2 v; c0s40.0°
From this, v; = 10.7 m/s
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2.2
*3.48 Equation 3.15: j = visin®6;
28
2 . 2 .
Equation 3.16: R=U sin26; _ 2vj sin6; cos;
8 8
If h=R/6, Equation 3.15 yields v;sin6; = | gR/3 (1)

2(\;’gR / 3)vi cosb;

Substituting Equation (1) above into Equation 3.16 gives R=
8

which reduces to v; cosb; = % 3gR ()
(a) From Oy =y Hayt, the time to reach the peak of the path (where Oy = 0) is found to be
tpetzk =v;sin ei/g

Using Equation (1), this gives Fpeak = JR/3g

The total time of the ball’s flight is then ‘tﬂight =2tpor = 2JR/3 g‘

(b) At the path’s peak, the ball moves horizontally with speed v, = v,; = v; cos6;

Using Equation (1), this becomes Vpeak = %\/ 3gR
(c) The initial vertical component of velocity is vy = v;sinb;
From Equation (1), Vyi 2‘ \/ gR/3 ‘
(d) Squaring Eq. (1) and (2) and adding the results, viz (sim2 0; + cos? 91’) = % + % = %
Thus, the initial speed is v; = 13gR
V12
Sin6 gR/3
(e) Dividing Equation (1) by (2) yields tan@; = v; $inb; = (\1 8 ) =§
v; Cos; (5 \/3gR)
Therefore, 6, = tan™! (%) =| 33.7°

(f) For a given initial speed, the projection angle yielding maximum peak height is 6; =90.0°. With
the speed found in (d), Equation 3.15 then yields

L (138R/12)sin?90.0° | 15 o
max — zg | 21

(g) For a given initial speed, the projection angle yielding maximum range is 6; = 45.0°. With the
speed found in (d), Equation 3.16 then gives
(13gR/12)sin90.0°

13
R = = — R
max g 12
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*3.49 Measure heights above the level ground.
The elevation y, of the ball follows v, =R+0- % gt?
with x=v;t so y, = R—gx? /20
(a) The elevation y, of points on the rock is described by y, 2 +x*=R?

We will have y, =y, atx =0, but for all other x we require
the ball to be above the rock surface as in y;, > v,.

Then 2 +x° > R?

If this inequality is satisfied for x approaching zero, it will be true for all x. If the ball's parabolic
trajectory has large enough radius of curvature at the start, the ball will clear the whole rock:

1>§
i
v; > gR
. oy gx2
(b) With v; =/gR and y;, =0, we have 0=R—2g—R
or x=RV2

The distance from the rock's base is x—-R= (2 -1DR
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; Ax =v;t

+y @Jr;ﬁ 27_5>m /s

2
Combine the equations eliminating : Ay = -1 g(AxJ T 0
2

Ui 3000 m
. From this, (A )2 (—2Ay) 12 l \

g 2

f X >|
thus Av=v; ==Y —75 / ~2=300) _ 6 80 10° =| 6.80 km
Vg V' 9.80

The plane has the same velocity as the bomb in the x direction.

3000 m directly above the bomb

Therefore, the plane will be when it hits the ground.

When ¢ is measured from the vertical, tan¢ = Zﬁ
Y
therefore, ¢=tan"! Axl_ tan_1(6800) = 66.2°
Ay 3000
The football travels a horizontal distance /{/ ST T T
30° S
2. 2 o
RYi sin(26;) _ (20.0) sin(60.0°) _ 353 m 50m ‘4_ Ar >
< 9.80
< R >|
Time of flight of ball is
[ 2v;sin6; _ 2(20.0)sin30.0° _ 204 s

g 9.80
The receiver is Ax away from where the ball lands and Ax = 35.3 -20.0 =15.3 m

To cover this distance in 2.04 s, he travels with a velocity

153

v= BT 7.50 m/s in the direction the ball was thrown
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(c)

Chapter 3

Equation of bank: y> =16x (1)
Equations of motion:  x=uv;t 2) >
y:—%gtz (3)

2
Substitute for ¢ from (2) into (3) y = —% g(xz]
’Z).

1

Equate y from the bank equation to y from the
equations of motion:

2
2 2.4 2.3
1 [ x g x 9x
léx=|—=¢| — || = —l6x=x -16|=0
[ 2g(vi2]] 4:7]1'4 (401'4 )

640, 104 )"
Fromthis, x=0 or %= —— and x=4 5 = 18.8 m
q 9.80
2 2
9.80)(18.8)
Also, y=—Lol X __10980(18.8)" :‘ 173 m ‘
Y= g( viz) 2 (10.0)
While on the incline
v}—v?:2an vp—v; =at
v —0=2(4.00)(50.0)
20.0 -0 = 4.00¢
v = 20.0 m/s t= 5.00s
Initial free—flight conditions give us v,; =20.0c0s37.0°=16.0 m/s
and Vyi = -20.0sin37.0°=-12.0 m/s

Uy =y since  a, =0

v, == 28,0y +0,2 = —2(-9.80)(-30.0) + (-12.0)> =—27.1m /s

vf = \/Uxfz + vyfz = \;;(16.0)2 +(-27.1)* =| 31.5m/s at 59.4° below the horizontal

Uyr =0y —-27.1+12.0

t1=58,' t2: 29.80

=154s t=t +t, = 6.54s

a

Y

Ax=v,t =16.0(1.54) = 24.6 m
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Consider the rocket's trajectory in 3 parts as
shown in the sketch. Our initial conditions give:

a, =30.0sin53.0° = 24.0 m/s?
a, =30.0c0853.0°=18.1m/s”

v,; =100sin53.0°=79.9 m/s
v,; =100c0s53.0°=60.2 m/s

The distances traveled during each phase of the

motion are given in the table.

Path #1: Uy =799 = 24.0(3.00) or

v, —60.2 =18.1(3.00) or

Ay =79.9(3.00) +  (24.0)(3.00) = 347 m

_ 1 2
Ax = 60.2(3.00) + 5 (18.1)(3.00)* =262 m

Path #2: a, =0, vy =0, =114m/s
0-152 =-(9.80)t

Ax =114(15.5) =1.77 x 10° m;

Ay =152(15.5) - £ (9.80)(15.5)" =1.17 x10°

2
Path #3:  (v,) —0=2(-9.80)(-152x10°)
Uy = -173 m/s
~173-0=—(9.80)¢

Ax =114(17.6) = 2.02x 10° m

Ay(max)= 1.52x10° m

H(net)=3.00+155+17.6 = 36.1s

Ax(net) =262 +1.77 x 10° +2.02 x 10°

Ax(net) = 4.05x 10° m

/ \
/ \
/
1, \
\
53° \
y v
Vyf = 152 m/s
vy =114m/s
or t=155s
Uy =0y =114 m/s, since a, =0
or t=17.6s
Path Part
#1 #2 #3
a, 24.0 -9.80 -9.80
ay 18.1 0.0 0.00
Uy 152 0.0 -173
s 114 114 114
Vyi 79.9 152 0.00
o 60.2 114 114
Ay 347 1.17x10° ~1.52x10°
Ax 262 1.77 x 103 2.02x103
t 3.00 15.5 17.6
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Chapter 3

Ax=v4t,  Ay=v,t+ %gtz 100m/s =
dc0s50.0° = (10.0cos15.0°)¢
and —dsin50.0° = (10.05in15.0°)¢ + 5 (-9.80)t>

Solving, d=| 432m and t=2.88s

Since a, =0,

Uyp = U= 10.0 cos 15.0° = 9.66 m/s

Vyp =0y + 4y t=10.0sin15.0° —9.80(2.88) =| —25.6 m/s

Air resistance would decrease the values of the range and maximum height.

As an airfoil, he can get some lift and increase his distance.

For one electron, we have

y
—v.t, D=v t+ ati=tat’ v = do, = t=at -
y=uvyt, D=vpt+5a,t” =5a,t", v =0y, and v =v; +ad =at. -
\rx

The angle its direction makes with the x-axis is given by

14 [ vt
6=tan"! o tan ' 2 =tan”! —yl2 = 1Y
Uxf at at 2D

Thus the horizontal distance from the aperture to the virtual

source is 2D. The source is at coordinate| x=-D |.

Think of shaking down the mercury in an old fever thermometer. Swing your hand through a
circular arc, quickly reversing direction at the bottom end. Suppose your hand moves through
one-quarter of a circle of radius 60 cm in 0.1 s.

1@m)(06m)

It di =9
s speed is 01s m/s

2 2
and its centripetal acceleration is Ly (9(;11% ~10% m/s?
om L

The tangential acceleration of stopping and reversing the motion will make the total acceleration
somewhat larger, but will not affect its order of magnitude.
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3.58 Find the highest firing angle 6y for which the projectile will clear the mountain peak; this will
yield the range of the closest point of bombardment. Next find the lowest firing angle; this will
yield the maximum range under these conditions if both 6y and 6; are >45°%
x=2500 m, y =1800 m, v; =250 m/s.

2

Yr =0yt = %gt2 = v;(sinO)t —%gt Xp =0yt =v;(cosO)t

Wi
Thus f=———
v; cosO

Substitute into the expression for =v;(sin) ¥ 1 s i =x,tanf — gixf%
P i g =t v;cos0 2 8 v; cosO f 201-2 cos’ 0

2

gxf 2
but ———=tan’0+1 SO =x,tan0@ - =—=(tan“ 0 +1) and
cos* 6 Yr=% 2012( )
0 ng%t 29_x tanf+ 2L
="~ tan“O—x,tanf + ==+
207 f 207 I

1 1

Substitute values, use the quadratic formula and find

tan 6 = 3.905 or 1.197, which gives 6 =75.6° and 6; =50.1°

2 .
Range (at 6y) = 2SN29 _ 3 07%10° m from enemy ship

3.07 x 10% — 2500 — 300 = 270 m from shore

2 .
Range (at 6;) = 2 SiN20L _ 6 28%10° m from enemy ship
8

6.28 x 10° — 2500 — 300 = 3.48 x 10° from shore

Therefore, safe distance is| <270 m |or >3.48x10%> m | from the shore.

v;=250m/s

|
Lizsoo Ml 300m_y
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10.

12.

14.

16.

18.

20.

22,

24.

26.

28.

30.

32.

34.

36.

38.

40.

42,

44.
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ANSWERS TO EVEN NUMBERED PROBLEMS

(@) (1.00i+0.750§) m/s

(@) (2.00i+3.00j) m/s>
(a) r:[5.00ti+%(3.00t2)j] m;
(b) (10.0 m, 6.00 m), 7.81 m/s

(a) 229m/s
(0 v=(114i-443j)m/s

(@) wv=d,g/2h horizontally

0.600 m/s> down
22.4° or 89.4°

(a) 20.0°
25.8m/s

991 m/s

(a) 0.852s
(d) 50.8°

(@) 1.02x10°m/s

(b)
(b)

(b)

(b)

(b)

(b)
(e)

(b)

(1.00i+0.500j) m/s, 1.12m/s

r=(3.00¢ +# )i m+(1.50¢> - 2t)j m

v =[5.00i+3.00tj] m/s

360 m from the base of the cliff

0= tan_l(Zh /d) below the horizontal

3.05s

3.29m/s
1.12s

2.72%107° m/s® toward the Earth

0.033 7 m/s? toward the center of the Earth

0.281 rev/s

(@) 1.25 m/s?> toward the center

() 1.31 m/s?> forward and 72.3° inward

(a) See the solution.

(c) 6.67m/s at 36.9° above the horizontal

18.0s

(a) 36.9°

tAlan = % Beth = L/C
1-v"/c \V1-02/¢?

(a) 1.69km/s

54.4 m/s?

4.00 km/h

(b)

(b)

41.6°

. Beth returns first.

1.80 h

(c)

(b)

(b)

(c)

403m/s

0.400 m/s® forward

29.7 m/s?

3.00 min



46.

48.

50.

52.

54.

56.

58.

(@) 25.0 m/s%; 9.80 m/s? (b) See the solution.
() 26.8 m/s? inward at 21.4° below the horizontal

(@ 2JR/3g (b) 5+33R (© JgR/3

@ | 2gR (e) 33.7° ® DR

(® LR

(a) 6.80 km (b) 3.00 km vertically above the impact point

() 66.2°

(18.8,-17.3) m

(a) 1.52km (b) 36.1s (c) 4.05km

x=-D

Safe distances are less than 270 m or greater than 3.48 x 10° m from the western shore.

Chapter 3
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