Electromagnetism warp drive solid state and liquid state !!1 ----------------- Bulletin Message ----------------- From: INFINITE INTELLIGENT BEINGS Date: 21/11/2007 Electromagnetism warp drive solid state and liquid state

Magnetism, electricity, and special relativity

Main article: Electromagnetism

As a consequence of Einstein's theory of special relativity, electricity and magnetism are understood to be fundamentally interlinked. Both magnetism without electricity, and electricity without magnetism, are inconsistent with special relativity, due to such effects as length contraction, time dilation, and the fact that the magnetic force is velocity-dependent. However, when both electricity and magnetism are taken into account, the resulting theory (electromagnetism) is fully consistent with special relativity[4][5]. In particular, a phenomenon that appears purely electric to one observer may be purely magnetic to another, or more generally the relative contributions of electricity and magnetism are dependent on the frame of reference. Thus, special relativity "mixes" electricity and magnetism into a single, inseparable phenomenon called electromagnetism (analogously to how special relativity "mixes" space and time into spacetime).

 Magnetic fields and forces
Magnetic lines of force of a bar magnet shown by iron filings on paper
Magnetic lines of force of a bar magnet shown by iron filings on paper

Main article: Magnetic field

The phenomenon of magnetism is "mediated" by the magnetic field -- i.e., an electric current or magnetic dipole creates a magnetic field, and that field, in turn, imparts magnetic forces on other particles that are in the fields.

To an excellent approximation (but ignoring some quantum effects---see quantum electrodynamics), Maxwell's equations (which simplify to the Biot-Savart law in the case of steady currents) describe the origin and behavior of the fields that govern these forces. Therefore magnetism is seen whenever electrically charged particles are in motion---for example, from movement of electrons in an electric current, or in certain cases from the orbital motion of electrons around an atom's nucleus. They also arise from "intrinsic" magnetic dipoles arising from quantum effects, i.e. from quantum-mechanical spin.

The same situations which create magnetic fields (charge moving in a current or in an atom, and intrinsic magnetic dipoles) are also the situations in which a magnetic field has an effect, creating a force. Following is the formula for moving charge; for the forces on an intrinsic dipole, see magnetic dipole.

When a charged particle moves through a magnetic field B, it feels a force F given by the cross product:

..vec{F} = q ..vec{v} ..times ..vec{B}

where q.., is the electric charge of the particle, ..vec{v} .., is the velocity vector of the particle, and ..vec{B} .., is the magnetic field. Because this is a cross product, the force is perpendicular to both the motion of the particle and the magnetic field. It follows that the magnetic force does no work on the particle; it may change the direction of the particle's movement, but it cannot cause it to speed up or slow down. The magnitude of the force is

F = q v B ..sin..theta..,

where ..theta .., is the angle between the ..vec{v} .., and ..vec{B} .., vectors.

One tool for determining the direction of the velocity vector of a moving charge, the magnetic field, and the force exerted is labeling the index finger "V", the middle finger "B", and the thumb "F" with your right hand. When making a gun-like configuration (with the middle finger crossing under the index finger), the fingers represent the velocity vector, magnetic field vector, and force vector, respectively. See also right hand rule.

Lenz's law gives the direction of the induced electromotive force (emf) and current resulting from electromagnetic induction. German physicist Heinrich Lenz formulated it in 1834.
Mini Micro Wireless COLOR Pinhole Spy Camera * Smallest * Perfect for Nanny Cam, R/C Helicopter, RC Car & Airplane + Security ONLY \$49.95
Science Fiction eBooks

Music eBooks

Music

Email: bobcolee@yahoo.com