[image: image1.png]9o

Configuous
memory block
allocated by
AB&C

Froo]-‘
lo | . 1le
| 8 frees its

+
C requests
memory

free memory
< but it isn't

contiguous
and remains
D] free unused

1. How is logical address translated to the physical address?

When the processor is in the user mode, all addresses are logical addresses. When an instruction generates a logical address, the processor will check to see that the logical address is less than the bound register. If it is not, then a program error is generated. Otherwise, the base register contents are added to the logical address to generate a physical address. The physical address is then placed on the address bus.

Ie a program is restricted to a portion of physical addresses. It cannot access any physical address less than the value of the base register and it cannot access any physical address greater than the sum of base and bounds register. This is a simple form of memory protection.
2. Explain the five components of Linux Kernel.

The Process Manager (Scheduler): This is the component that handles the Process Scheduling and accounting information. It also has real-time process management capability, thus making Linux a Soft Real-Time System. The Process Manager also has the capability for Symmetric Multi-Processing and, as an example, it can control up to 16 Intel 32bit CPUs, which is the maximum possible on Intel architecture

The Memory Manager: The Memory manager handles the Virtual Address Space and handles the job of mapping the Virtual Memory Addresses to the Real Memory Addresses. It also handles requests for run-time memory allocation

VFS: VFS (Virtual File System) is a layer that sits between the kernel and the file-system drivers. This makes adapting the Linux kernel to any file-system extremely easy. All that a developer has to do is write a file-system driver that provides services required by VFS and compile it into the rest of the kernel.

Network Interface: This is the component that enables the Linux kernel to talk to the world. Internally, the communication is handled by BSD Sockets.

IPC Interface: This is the part that is responsible for Inter-Process Communication inside the Linux system. The Linux kernel, by default, supports the Sys V IPC, BSD IPC and POSIX IPC mechanisms but any of these can be turned off at build-time.
3. What is monitor? Explain.

A primary aim of an operating system is to share a computer installation among many programs making unpredictable demands upon its resources . A primary

task of its designer is therefore to construct resource allocation (or scheduling) algorithms for resources of various kinds (main store, drum store, magnetic tape

handlers, consoles, etc.). In order to simplify his task, he should try to construct separate schedulers for each class of resource. Each scheduler will consist of a certain

amount of local administrative data, together with some procedures and functions which are called by programs wishing to acquire and release resources. Such a collection of associated data and procedures is known as a monitor.
 monitorname : monitor

begin.., declarations of data local to the monitor;

procedure procname (... formal parameters...) ;

begin.., procedure body.., end;

•.. declarations of other procedures local to the monitor;

•.. initialization of local data of the monitor...

end;

Note that the procedure bodies may have local data, in

the normal way.

In order to call a procedure of a monitor, it is necessary to give the name of the monitor as well as the name of the desired procedure, separating them by a dot:

monitorname.procname(.., actual parameters...) ;

4. What are precedence graphs?
This is a design activity done for an application which can be implemented in a multitasking manner.

The first step in preparing an application for multitasking implementation is to identify operations that should be coded as separate processes and to determine their relative precedence, if any.

The precedence relationship are represented by the directed graphs where nodes represent activities which can be done sequentially or parellely. The arcs in the graph represent causal and precedence relationship.
Ie an arc from node I to j require that activity i be completed before activity j can start.

This directed graph is called a precedence graph.
A node in a precedence graph could be a software task, as recognized by the operating system, or could be statements within a program that can be executed concurrently with respect to each other [see example below], or could describe some activity taking place during the execution of a single machine instruction.
The different "sizes" of these concurrent activities, is referred to as the CONCURRENCY GRAIN of the representation. It goes from COARSE (the concurrency of operating systems task), to FINE (the concurrency of single instructions, or of groups of instructions, as done for example in superscalar processors), to VERY FINE (concurrency at the register transfer level in the hardware during the execution of the single instruction).

5. Differentiate between temporal locality and spatial locality.
Several studies suggest a strong tendency of programs to favor subsets of their address spaces during execution. This phenomenon is called locality of reference. Both temporal and spatial locality of reference has been observed.
Spatial locality is the tendency for a program to reference clustered locations or closely spaced locations in preference to randomly spaced locations. . Temporal locality is the tendency of the program to refer the same location or a cluster several times during brief intervals of time.
6. Explain the overlay concept.

Divisions in a program is made into overlays. At any time only one overlay is in memory, when the program needs code or data in another overlay, the program commands the current overlay to be swapped out and the required overlay to be swapped in. Use of overlays allows large programs to fit into a limited amount of memory, but at the cost of speed. Keep in memory only the overlay (those instructions and data that are) needed at any given phase/time. Overlays can be used only for programs that fit this model, i.e., multi-pass programs like compilers. Overlays are designed/implemented by programmer. Needs an overlay driver or code which makes decision as to which overlay has to be swapped out and swapped in. No special support needed from operating system, but program design of overlays structure is complex. Overlay driver will be loaded first.
7. Differentiate between binary and counting semaphore?
There are two types of semaphores binary semaphores and counting semaphores. A binary semaphore allows only one process at a time to enter the critical region. A counting semaphore allows a fixed number of processes (say n) to enter the critical region simultaneously. Note that a counting semaphore where n=1 is equivalent to a binary semaphore.

8. Differentiate between external and internal fragmentation.

A contiguous block of memory is divided up and allocated by processes A, B and C. When process B frees its memory (Figure 1), the memory becomes available for others to use. But when C requests a single memory block the same size as the two blocks of memory released by B (Figure 1), the memory is unavailable because it is non-contiguous. This is called external fragmentation because memory blocks external to your request create gaps that can't be collapsed and used as contiguous blocks of memory.

Figure 1: External fragmentation in physical memory.
[image: image28.png]queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183 199
| | |
[

For example, in Figure 2, when process A requests 5KB, the OS uses two 4KB blocks to satisfy the request. In this case, the 3KB of leftover memory won't be used unless process A requests a memory block less than or equal to the size of the leftover memory block. This wasted memory is said to be caused by internal fragmentation because the wasted memory is internal to the memory allocated by the requesting process. However, when process A frees the 5KB memory block, the entire 8KB is returned to cache.

[image: image2.png]o

Contiguous
memory

divided into
4KB pages

(1]

Process A

requests
a 5KB
block

Two 4KB

id

pages are
allocated

|

(<]

5KB in use
by process A

3KB unused
until 5KB is
freed by A

9. Differentiate between character and block device drivers.

A device driver is a collection of subroutines and data within the kernel that constitutes the software interface to an I/O device. When the kernel recognizes that a particular action is required from the device, it calls the appropriate driver routine, which passes control from the user process to the driver routine. Control is returned to the user process when the driver routine has completed. A device driver may be shared simultaneously by user applications and must be protected to ensure its own integrity.
Block device drivers

The devices with fixed size addressable blocks are block devices, and their device drivers are called block device drivers. A block device driver is accessed by user programs through a system buffer that acts as a data cache.
Character device drivers

All other devices can be classified as non-block devices. These are devices that send or receive data in stream of bytes , with no addresses associated with the bytes .For eg, a keyboard produces a sequence of keystrokes, but they do not have addresses . The device drivers for these devices are called character device drivers.
10. Explain 5 different file systems in OS ?

File system types can be classified into disk file systems, network file systems and special purpose file systems.

Disk file systems

A disk file system is a file system designed for the storage of files on a data storage device, most commonly a disk drive, which might be directly or indirectly connected to the computer. Examples of disk file systems include FAT, NTFS, HFS, ext2, ISO 9660, ODS-5, and UDF.

Network file systems

A network file system (also known as a distributed file system) is a file system where the files are accessed over a network, potentially simultaneously by several computers. Ideally, access to network file systems is user transparent. Examples include NFS, CIFS, Lustre, AFS, and Global File System.

Database file systems

New concepts for file management are database-based file systems. Instead of hierarchical structured management, files are identified by their characteristics, like type of file, topic, author, or similar metadata. Therefore a file search can be formulated in SQL or in natural speech. The example on the right side shows a query for "Movies that were directed by Spielberg". Examples include Gnome VFS, BFS, and WinFS.

Transactional file systems

This is a special kind of file system in that it logs events or transactions to files. Each operation that you do may involve changes to a number of different files and disk structures. In many cases, these changes are related, meaning that it is important that they all be executed at the same time. For example, a bank sending another bank some money electronically. The banks computer will "send" the transfer instruction to the other bank...and it will also update its records to indicate the transfer has occurred. If for some reason the banks computer crashes before its had chance to update its own records, then on reset, there will be no record of the transfer but the bank is missing some money.

Special purpose file systems

A special purpose file system is basically any file system that is not a disk file system or network file system. This includes systems where the files are arranged dynamically by software, intended for such purposes as communication between computer processes or temporary file space.

Special purpose file systems are most commonly used by file-centric operating systems such as Unix. Examples include the '/proc' file system used by some Unix variants, which grants access to information about processes and other operating system features.

Deep space science exploration craft, like Voyager I & II used digital tape based special file systems. Most modern space exploration craft like Cassini-Huygens used Real-time operating system file systems or RTOS influenced file systems. The Mars Rovers are one such example of a RTOS file system, important in this case because they are implemented in flash memory.

PART B

11. a)Describe an operating system in detail.

b) Explain the different types of Operating System.
a)

A program that acts as an intermediary between a user of a computer and the

computer hardware
Operating system goals are
Memory management

File or Information Management

CPU scheduling

Process Management

Device or I/O Management

[image: image3.emf]
b)

Multiprogrammed Systems

Several jobs in main memory at same time; CPU time multiplexed among them

[image: image4.emf]
OS Features Needed for Multiprogramming

a. I/O routines supplied by system

b. Memory management – system must allocate memory to several jobs

c. CPU scheduling – system must choose among several jobs ready to run

d. Allocation of devices

Time-Sharing Systems–Interactive Computing

- CPU multiplexed among several jobs in memory and on disk (CPU allocated only to jobs in memory)
- Job swapped in and out of memory to disk

 -On-line communication between user and system provided; when OS finishes execution of a command, it awaits next “control statement” from user

- On-line system must be available for users to access data and code

Desktop Systems

- Personal computers – dedicated to a single user

- I/O devices – keyboards, mice, screens, printers

- User convenience and responsiveness

- Can adopt technology developed for larger system

-Individuals have sole use of computer, do not need advanced CPU utilization, protection features

- May run several different types of OS (Windows, Mac OS X, UNIX, Linux)
Multiprocessor Systems
- Tightly coupled system – processors share memory and a clock; communication usually

through shared memory

 Advantages of parallelism:

- Increased throughput

- Economical
- Increased availability
-Graceful degradation

 Symmetric multiprocessing (SMP)

- Each processor runs identical copy of OS

- Many processes at once without performance loss

- Most modern operating systems support SMP

Asymmetric multiprocessing
- Each processor assigned specific task; master

processor schedules, allocates work to slave processors

- Mostly for specialized high-end computation

Architecture

[image: image5.emf]
Distributed Systems
- Distribute computation among several physical

processors

- Loosely coupled system – each processor has own local memory; processors communicate with each other through various interconnects, such as high-speed buses or internet.

- Advantages of distributed systems
- Resource Sharing

- Low cost (commodity parts)

- Computation speed up – load sharing

- Availability through redundancy (≠ reliability)

- Compromise: distributed shared memory

- Hardware distributed, software implements shared memory

Require networking infrastructure

- Local area networks (LAN) or Wide area networks (WAN)

- May be either client-server or peer-to peer systems

- Client and server roles may vary e.g. X terminal is a windowing server;

runs on machine you think of as client
Client Server Architecture

[image: image6.emf]
Clustered Systems

- 2 or more systems share resources

- Provides high availability

- Asymmetric clustering: one server runs application, rest stand by.

- Symmetric clustering: all N run application

Real-Time Systems
- Common uses:

- control device in dedicated application, e.g., control scientific experiment, medical imaging, industrial control

- some display systems

- Well-defined fixed-time constraints

Real-Time systems may be either

- hard (must react in time) or

- soft real-time (deal with failure to react in time)

 Hard real-time:

- Secondary storage limited or absent, data stored in fast memory, or read-only memory (ROM)

- Conflicts with time-sharing systems, hard to support in general-purpose operating system

Soft real-time
- Limited utility in industrial control of robotics

- Useful in applications (multimedia, virtual reality) requiring predictable quality of service

Mobile Systems
- Personal Digital Assistants (PDAs)

- Cellular telephones.

- Issues:

- Limited memory

- Variety of interconnect standards

- Slow processors

- Small screens (Web Clipping)

OR
12. Describe structure of LINUX GUI system in detail.

The GUI System

Linux GUI is based on a client-server model that gives it a wide range of operational flexibility. Detaching GUI from the basic OS gives you the advantage of having the latest version of the OS on limited-resource systems too. So while Windows Me can't run on systems having less than 64 MB RAM, you can have the latest release of Linux running happily on a 486 with 16 MB RAM in GUI mode.It also facilitates remote usage in a server(s) - terminal environment.

The Linux GUI system is a 3 layered one. Every terminal running Linux in GUI mode has an X Server running in its memory. This thing is responsible for putting the pixels on to the screen and handling the keyboard and mouse. On top of the X Server is a Window Manager. The Window Manager (obviously) does the job of handling windows, menus and their appearance. In addition to that, it is also responsible for handling Desktop Shortcut Keys. By far, the Window Manager has the greatest impact on the appearance of your GUI. Finally, we have the Desktop Environment. Desktop Environment is the set of Programs that enhance desktop utility, for example a file manager, and control the appearance of stuff that is inside the windows - buttons, toolbars etc. This three-layer approach offers a lot of choices by way of various combinations of the three. Getting a feeling of the richness of the Linux GUI? Let's explore.

The X Server

The X Server is the most important part of the Linux GUI as it is the software that interacts directly with the hardware. The Client-Server architecture allows the use applications directly off an application server on completely heterogeneous machines. This is especially useful in distributed environments because whichever terminal you site on, you'll get to see the graphics exactly as you like them. The basic engine behind this client-server model is xlib, a set of API and shared libraries that allows a developer to write applications for the display, without bothering about the underlying hardware.

There are several X servers available in the market but the default X Server for almost all the Linux distributions is XFree86. XFree86 is an Open Source X Server and supports a very wide range of hardware. It can support all the standard CRT Monitors as well as LCD Screens etc. On PCs, it can do up to 32 bit (4.3 billion) colors at a maximum resolution of 3200x3200 pixels. The top-end systems today run on 24/32 bit colors at a resolution of 1280x960 pixels even on 17" monitors. Good support is available for TrueType, Type1 and Web Fonts and since XFree86 4.2, Anti-aliasing (smoothing of the edges) of fonts is also possible. It can also handle most of the common keyboards and advanced pointing devices like PS/2 scroll-mice, trackballs and graphical tablets.

The Window Manager

The Window Manager is what contributes greatly to the appearance of your GUI as it is responsible for drawing and controlling the windows and menus. There are many window managers available for Linux and your choice of one may depend on the factors of memory consumption, appearance and richness of features. For example, TWM is a small and very fast window manager that packs just the bare minimum functionality. On the other hand, Enlightenment Sawfish and KDE Window Manager are a little bulkier (~ 2 - 3 MB) for the memory to carry, but in return offer a tide of features and lots of easily configurable preferences.

Shaped Window Decorations: Unlike MS Windows, you get 3D Window decorations that have shapes. Your Title bar may have curved edges and the window-buttons may appear sitting separately on top. Their shapes too could be anything - round, oval, shaped according to function etc. The Title-bars usually glow when active. Ditto with mouse over on buttons.

Multiple Desktops: You can have not one but multiple desktops running at once - each with its own windows and applications. It's like working on many different computers at the same time.

More Window Attributes: Maximize-Minimize-Restore-Resize-Move - this is all that you can do with your MS Windows. Now check this out.

Layers help you control the visibility of your windows. There are three modes of layers - above (keep above the last active window), below (converse of above) and top (show it above all other windows, like "Always on top" in Winamp).

You can make your windows have no borders, no borders and title-bars (great for visualization plug-ins for media players) or just borders and no title-bars.

You can shade / unshade your windows (shading means hiding everything but the title-bar - great for running monitor apps).

The windows may Stick (stay as you switch desktops)

You can maximize in three modes - maximize (the normal mode), maximize available (expand as far as empty space is available) and maximize absolute (maximize to the full size of the screen, even covering the taskbar).

Remember Window Attributes: You can make any of your windows remember its attributes - the ones mentioned above - individually or all together. For example, you may want to place your mp3 player in such a way that when you maximize your windows, the player appears just to the left of the buttons.

Shortcut Keys: This is perhaps the most useful of all features. You can have your custom shortcut keys for all the window manager's functions plus launching your applications and running commands. For example, I have set the sequence Ctrl+Shift+e to launch Emacs (a text editor with everything and the kitchen sink). This is so much better than Windows where you first have to create a shortcut file and then specify a key combination. Also, if you want to make major changes in your shortcuts, it is better to have them all in one place unlike MS Windows.

The Desktop Environment

The Desktop Environment is a set of applications that enable you to manage your Desktop. It is responsible for allowing you to browse files, handle desktop shortcuts, provide a "Start Menu" (known with different names in different Environments) and a "Taskbar" (again having many names). The most popular and widely supported Desktop Environment is GNOME (GNU Network Object Model Environment). It offers a Desktop, Panel (aka Taskbar in Windows), loads of themes and a host of utility applications. Although the primary responsibility of the Desktop Environment is giving functionality to the Desktop, it also controls the appearance of buttons, menus and toolbars displayed by the applications and the Start Menu. Note that these are different from the Window Manager's buttons and menus
13. Describe the different types of process schedulers in detail.
Types of scheduling - Long , short and medium term scheduling

In mono-tasking operating systems the issue of scheduling is trivial: after the system has set up the execution environment of a process, CPU control is given to it until the process itself exits. In a pun, the system is not operating at all during the program's execution, save for providing services through subroutine calls. It's only with multi-tasking operating systems that scheduling becomes a top entry in a designer's agenda.

In many multitasking systems the processor scheduling subsystem operates on three levels, differentiated by the time scale at which they perform their operations. In this sense we differentiate among:

Long term scheduling: which determines which programs are admitted to the system for execution and when, and which ones should be exited.

Medium term scheduling: which determines when processes are to be suspended and resumed;

Short term scheduling (or dispatching): which determines which of the ready processes can have CPU resources, and for how long.

Taking into account the states of a process, and the time scale at which state transition occur, we can immediately recognize that

dispatching or short term scheduling affects processes

running;

ready;

blocked;

The medium term scheduling affects processes

ready-suspended;

blocked-suspended;

The long term scheduling affects processes

new;

exited

Long term scheduling obviously controls the degree of multiprogramming in multitasking systems, following certain policies to decide whether the system can honor a new job submission or, if more than one job is submitted, which of them should be selected. The need for some form of compromise between degree of multiprogramming and throughput seems evident, especially when one considers interactive systems. The higher the number of processes, in fact, the smaller the time each of them may control CPU for, if a fair share of responsiveness is to be given to all processes. Moreover we have already seen that a too high number of processes causes waste of CPU time for system housekeeping chores (trashing in virtual memory systems is a particularly nasty example of this). However, the number of active processes should be high enough to keep the CPU busy servicing the payload (i.e. the user processes) as much as possible, by ensuring that - on average - there always be a sufficient number of processes not waiting for I/O.

Simple policies for long term scheduling are

Simple First Come First Served (FCFS): it's essentially a FIFO scheme. All job requests (e.g. a submission of a batch program, or an user trying to log in a time shared system) are honored up to a fixed system load limit, further requests being refused tout court, or enqueued for later processing.

Priority schemes. Note that in the context of long term scheduling ``priority'' has a different meaning than in dispatching: here it affects the choice of a program to be entered the system as a process, there the choice of which ready process should be executed.

Medium term scheduling is essentially concerned with memory management, hence it's very often designed as a part of the memory management subsystem of an OS. Its efficient interaction with the short term scheduler is essential for system performances, especially in virtual memory systems. This is the reason why in paged system the pager process is usually run at a very high (dispatching) priority level.
The short term scheduler allocates the processor among the pool of ready processes resident in memory. Its main objective is to maximize system performance in accordance with the chosen set of criteria. Since it is in charge of ready to running state transitions, the short term scheduler must be invoked for each process switch o select the next process to be run. The short term scheduler is invoked whenever an event causes the global state of the system to change. Given that any such change could result in making the running process suspended or suspended process ready , the short term scheduler should be run to determine whether such significant changes have indeed occurred and if so select the next process to be run.

OR

14. a) What are the characteristics that are taken into account while designing the

 schedulers.

Utilization/Efficiency: keep the CPU busy 100% of the time with useful work

Throughput: maximize the number of jobs processed per hour.

Turnaround time: from the time of submission to the time of completion, minimize the time batch users must wait for output

Waiting time: Sum of times spent in ready queue - Minimize this

Response Time: time from submission till the first response is produced, minimize response time for interactive users

Fairness: make sure each process gets a fair share of the CPU
 b) Explain different process scheduling algorithms.

Non-Preemptive Vs Preemptive Scheduling

Non-Preemptive: Non-preemptive algorithms are designed so that once a process enters the running state(is allowed a process), it is not removed from the processor until it has completed its service time (or it explicitly yields the processor).

Preemptive: Preemptive algorithms are driven by the notion of prioritized computation. The process with the highest priority should always be the one currently using the processor. If a process is currently using the processor and a new process with a higher priority enters, the ready list, the process on the processor should be removed and returned to the ready list until it is once again the highest-priority process in the system.

First In First Out (FIFO)

This is a Non-Preemptive scheduling algorithm. FIFO strategy assigns priority to processes in the order in which they request the processor. The process that requests the CPU first is allocated the CPU first. When a process comes in, add its PCB to the tail of ready queue. When running process terminates, dequeue the process (PCB) at head of ready queue and run it.

Consider the example with P1=24, P2=3, P3=3

 Gantt Chart for FCFS : 0 - 24 P1 , 25 - 27 P2 , 28 - 30 P3

 Turnaround time for P1 = 24

 Turnaround time for P1 = 24 + 3

 Turnaround time for P1 = 24 + 3 + 3

 Average Turnaround time = (24*3 + 3*2 + 3*1) / 3

 In general we have (n*a + (n-1)*b +) / n

 If we want to minimize this, a should be the smallest, followed by b and

 so on.

Comments: While the FIFO algorithm is easy to implement, it ignores the service time request and all other criteria that may influence the performance with respect to turnaround or waiting time.

Problem: One Process can monopolize CPU

Solution: Limit the amount of time a process can run without a context switch. This time is called a time slice.

Round Robin

Round Robin calls for the distribution of the processing time equitably among all processes requesting the processor. Run process for one time slice, then move to back of queue. Each process gets equal share of the CPU. Most systems use some variant of this.

Choosing Time Slice

For example, consider two processes, one doing 1 ms computation followed by 10 ms I/O, the other doing all computation. Suppose we use 20 ms time slice and round-robin scheduling: I/O process runs at 11/21 speed, I/O devices are only utilized 10/21 of time.
[image: image7.png]

Problem: Round robin assumes that all processes are equally important; each receives an equal portion of the CPU. This sometimes produces bad results. Consider three processes that start at the same time and each requires three time slices to finish.
[image: image8.png]3456

78

9

* Process A finishes after 3 slices, B 6, and C 9. The average is (3+6+9)/3 = 6 slice
[image: image9.png]Round robin:
0123456789
A
B
c

Process A finishes after 7 slices, B 8, and C 9, so the average is (7+8+9)/3 = 8 slices.

Round Robin is fair, but uniformly inefficient.

Priority Based Scheduling

Run highest-priority processes first, use round-robin among processes of equal priority. Re-insert process in run queue behind all processes of greater or equal priority.

Allows CPU to be given preferentially to important processes.

Scheduler adjusts dispatcher priorities to achieve the desired overall priorities for the processes, e.g. one process gets 90% of the CPU.

.

Problem: Priority scheduling may cause low-priority processes to starve

Solution: (AGING) This starvation can be compensated for if the priorities are internally computed. Suppose one parameter in the priority assignment function is the amount of time the process has been waiting. The longer a process waits, the higher its priority becomes. This strategy tends to eliminate the starvation problem.

Shortest Job First

Maintain the Ready queue in order of increasing job lengths. When a job comes in, insert it in the ready queue based on its length. When current process is done, pick the one at the head of the queue and run it.

This is provably the most optimal in terms of turnaround/response time.

The length of a job is found by making an estimate based on the past behavior.

 Say the estimated time (burst) for a process is E0, suppose the actual

 time is measured to be T0.

 Update the estimate by taking a weighted sum of these two

 ie. E1 = aT0 + (1-a)E0

 in general, E(n+1) = aTn + (1-a)En (Exponential average)

 if a=0, recent history no weightage

 if a=1, past history no weightage.

 typically a=1/2.

 E(n+1) = aTn + (1-a)aTn-1 + (1-a)^jatn-j + ...

 Older information has less weightage
Comments: SJF is proven optimal only when all jobs are available simultaneously.

Problem: SJF minimizes the average wait time because it services small processes before it services large ones. While it minimizes average wait time, it may penalize processes with high service time requests. If the ready list is saturated, then processes with large service times tend to be left in the ready list while small processes receive service. In extreme case, where the system has little idle time, processes with large service times will never be served. This total starvation of large processes may be a serious liability of this algorithm.

Solution: Multi-Level Feedback Queues

Multi-Level Feedback Queue

Several queues arranged in some priority order.

Each queue could have a different scheduling discipline/ time quantum.

Lower quanta for higher priorities generally.

Defined by:

a)# of queues

b)scheduling algorithm for each queue

c)when to upgrade a priority

d)when to demote

Attacks both efficiency and response time problems.

Give newly runnable process a high priority and a very short time slice. If process uses up the time slice without blocking then decrease priority by 1 and double its next time slice.

Often implemented by having a separate queue for each priority.

15. a) What is a critical section.
Let's suppose that the processes which are sharing a printer are called process A and process B. The critical sections of process A and process B are the sections of the code which issue the print command. In order to insure that both process do not attempt to use the printer at the same, they must be granted mutually exclusive access to the printer driver.

b) Explain P and V semaphore operations in detail.

Semaphores are a synchronization mechanism used in concurrent programming with threads. Semaphores allow concurrent processes to set up critical regions. A critical region is a section of code that only a fixed number of processes (often only 1) are allowed to execute concurrently. Every critical region must be protected by an associated semaphore (or some other synchronization mechanism) that is shared by all processes that use the critical region. It is the semaphore's job to ensure that no more than the fixed number of processes ever execute the critical region concurrently.
P();

// P() - Called by threads trying to enter their critical regions.

//

// Disable interrupts to make P() atomic.

// Decrement value indicating that another thread had tried to enter the critcal region.

// Check value to see if there is room in the critical region for this thread.

// If there is (i.e. value >= 0) then let the thread continue.

// If there is not (i.e. Value < 0) then put the thread on the queue.

// Set interrupts back to their value when P() was called.

V();

// V() - Called by threads exiting their critical regions.

//

// Disable interrupts to make V() atomic.

// Increment the value indicating that a thread has left the critical region.

// Check value to see if there are still threads waiting to enter the critical region.

// If there are (i.e. value <= 0) then move a thread to the scheduler's ready queue.

// If there are not then just continue.

// Set interrupts back to their value when V() was called.

Version using Assembly Language Program
Each process executing will have its own register set values which will be in the PCB.

FLAG variable acts as a semaphore here and is a shared variable.

FLAG=0 indicates the critical section is executed by a process or resource to be shared is busy

FLAG=1 indicates the critical section is free or resource to be shared is free.

Initially FLAG is set to 1

P1:

MOV AL,0

; move the value 0 to register AL

TRYAGAIN:
XCHG AL,FLAG
; exchange the content of flag with zero

TEST AL,AL

;ANDS the contents of two operands without

;changing the contents of registers. Only flags

;will be affected

JZ TRYAGAIN
;If zero flag set means critical section is used

;by another process

;The first 3 instruction are P operations

;requesting the resource

…………….

Critical section

…………

MOV FLAG,1
; Indicating that critical section is

;devoid of any process by setting flag to 1

;Also called V operation .ie releasing the

;critical section or resource
Assume that P1 and P2 tries to enter critical section.

P1 executes instruction 1 and then P2 executes instruction 1.

So AL of both P1 and P2 are set to 0.

Next P1 executes instruction 2 .

So AL of P1 becomes 1 and FLAG becomes zero.
Next P2 executes instruction 2.

So AL of P2 becomes 0 and FLAG becomes zero since FLAG is shared.
Next P1 executes instruction 3 .

Since AL of P1 is 1, Zero flag is not set .

Next P2 executes instruction 3.

So AL of P2 is 0, Zero flag is set.
Next P1 executes instruction 4 .

Since Zero flag is not set, JZ instruction becomes false and P1 enters critical section.

Next P2 executes instruction 4.

Since Zero flag is set, JZ instruction becomes true and continues looping.

After doing critical section.

P1 executes the instruction MOV FLAG,1 which releases the critical section, which is called a V operation.

So P2 when it executes XCHG AL, FLAG causes AL to be 1 and can enter the critical section.

OR

16.
a) Explain consumer producer problem with the help of a monitor.

Monitor Prod-Cons

int Table[N];

condition bempty;

condition bfull ;

int count = 0, N = 40

procedure(enter)

if(count==N) wait(bfull);

enter_item1(Table); count=count + 1;

if (count==1) signal(bempty);

procedure(remove)

if(count==0) wait(bempty);

remove_item1(Table); count=count - 1;

if (count==N-1) signal(bfull);

End Monitor

Producer-Consumer With Monitor

procedure(producer)

{while(TRUE)

{produce(item); Prod-Cons.enter;}

}

procedure(consumer)

while(TRUE)

{Prod-Cons.remove; consume(item);}

}

b)Explain Bankers algorithm.
One of the versions I have given in the class

This is another version .
Deadlock Avoidance and the Banker's Algorithm

Deadlock Avoidance, assuming that we are in a safe state and we are requested certain resources, simulates the allocation of those resources and determines if the resultant state is safe. If it is safe the request is satisfied, otherwise it is delaied until it becomes safe.

The Banker's Algorithm is used to determine if a request can be satisfied. It uses the following variables:

AVAILABLE : array [1 .. m] of integer; -- it specifies for each resource how many copies of it are available

ALLOCATION: array [1..n, 1..m] of integer; -- ALLOCATION[i,j] specifies the number of copies of resource j that are allocated to process i.

MAXIM: array [1..n, 1..m] of integer; -- MAXIM[i,j] specifies the maximum number of copies of resource j that process i will use.

NEED; array [1..n, 1..m] of integer; -- NEED[i,j] specifies the number of copies of resource j that process i still requires. It is equal to MAXIM[i,j]-ALLOCATION[i,j]

and the following notation

A < B, where A and B are m-ary vectors, is true iff for all i, A[i] < B[i]

If A is a rectangular matrix, Ai is its ith row.

 procedure BANKER(REQUEST_I: array[1..m] of integer;

 i : 1..n) is

 {

 if REQUEST_I > NEEDi then

 ERROR; -- The user is asking more than the agreed maximum

repeat

 while (REQUEST_i > AVAILABLE)

 yield; -- Resources are not available at this time

 ALLOCATION_i = ALLOCATION_i + REQUEST_i;

 AVAILABLE = AVAILABLE - REQUEST_I;

 if SAFE_STATE then

 RETURN; -- The request is approved

 ALLOCATION_i = ALLOCATION_I - REQUEST_i;

 AVAILABLE = AVAILABLE + REQUEST_i;

 YIELD; -- The request cannot safely be satisfied at this time

 forever; }

 BOOLEAN function SAFESTATE is -- Determines if current state is safe

 { NOCHANGE : boolean;

 WORK : array[1..m] of INTEGER = AVAILABLE;

 FINISH : array[1..n] of boolean = [false, ..,false];

 I : integer;

 repeat

 NOCHANGE = TRUE;

 for I = 1 to N do

 if ((not FINISH[i]) and

 NEEDi <= WORK) then {

 WORK = WORK + ALLOCATION_i;

 FINISH[i] = true;

 NOCHANGE = false;

 }

 until NOCHANGE;

 return (FINISH == (true, .., true));

 }

17. Explain segmentation in memory management
Segmentation

 Concept

In general, a user or a programmer prefers to view system memory as a collection of variable-sized segments rather than as a linear array of words. Segmentation is a memory management scheme that supports this view of memory.

A logical address space is a collection of segments. Each segment has a name and a length. The addresses specify not only the name, but also the offset within the segment, so users specify addresses by a segment name and an offset. For simple implementation, segments are numbered and referred to by a segment number (rather than a segment name).

Implementation

Hardware components

Because the user specifies objects in his program by two-dimensional addresses (segment number and offset) and the physical memory address is still one-dimensional, we must define a mechanism to map two-dimensional user-defined addresses into one-dimensional physical addresses.
[image: image10.png]CPU

Addressing error

logical address
T

E

Segment table

)

'Y

The segment table can be put either in fast registers or in system memory. A segment table kept in registers can be very quickly referenced: the addition to the base and the comparison with the limit can be carried out simultaneously.

Otherwise, because a program may consist of a large number of segments, the segment table must be kept in system memory. A Segment Table Base Register STBR which points to the segment table in memory, and a Segment Table Length Register STLR which limits the possible manageable number of segment are implemented. The mapping procedure is clearly: for a logical address (s,d), we first check that the segment number s is legal, i.e. s < STBR; then we calculate the address in memory of the segment table entry by performing (STBR + s). This entry is read from memory and the physical address of the desired word is computed according to scheme illustrated in Figure below.

[image: image11.png]1400
segment 0
2400
Segment table
base Timit 3200
1400 1000 segment 3
6300 400
4300 400 4300
00 | 1o Pt
4700 1000 cEmmad)
5700
6300
6300 [segment 1

Physical memory

OR

18. Explain paged memory management in detail.
Paging

In a multiprogramming system memory is divided into a number of fixed size or variable sized partitions or regions which are allocated to running processes. For example: a process needs m words of memory may run in a partition of n words where n ³ m. The variable size partition scheme may result in a situation where available memory is not contiguous, but fragmented into many scattered blocks. We distinguish between internal fragmentation and external fragmentation. The difference (n – m) is called internal fragmentation, memory which is internal to a partition but is not being used. If a partition is unused and available, but too small to be used by any waiting process, then it is accounted for external fragmentation. These memory fragments can not be used.

In order to solve this problem, we can either compact the memory making large free memory blocks, or implement paging scheme which allows a program's memory to be noncontiguous, thus permitting a program to be allocated physical memory wherever it is available.

3.5.1.1 Concept

Physical memory is divided into fixed size blocks called frames. Logical memory is also divided into blocks of the same, fixed size called pages. When a program is to be executed, its pages are loaded into any available memory frames from the disk. The disk is also divided into fixed size which are the same size as the memory frames.

A very important aspect of paging is the clear separation between the user's view of memory and the actual physical memory. Normally, a user believes that memory is one contiguous space containing only his program. In fact, the logical memory is scattered through the physical memory which also contains other programs. Thus, the user can work correctly with his own view of memory because of the address translation or address mapping. The address mapping, which is controlled by the operating system, and transparent to users, translates logical memory addresses into physical addresses.

Because the operating system is managing the memory, it must be sure about the nature of physical memory, for example: which frames are available, which are allocated; how many total frames there are, and so on. All these parameters are kept in a data structure called frame table that has one entry for each physical frame of memory indicating whether it is free or allocated, and if allocated, to which page of which process.

3.5.1.2 Implementation

Hardware

The principal mapping of logical addresses into physical addresses is illustrated in Figure 3-18 -a. Every logical address generated by the CPU composes of two part: a page number p and a page offset d. The page number is used as an index into a page table. Each entry in the page table contains the base address r of each page in the physical memory. This base address is added to the page offset d to provide the required physical memory address.

The frame size and page size are specified by the concrete microprocessor architecture. Typically, the page size is a power of two, varied between 512 and 2048 words per page. The selection of a power of two as the page size makes the translation of a logical address into a physical address composed of page number and page offset much easier.

Consider an example showing how a logical address is mapped into a physical address (Figure 3-18 -b). Logical address 0 is page 0, offset 0. According to the page table we find that page 0 is in frame 5. Thus, the logical address 0 is mapped into the physical address 5 * 4 + 0 = 20. So we can calculate other physical addresses mapped to each given logical addresses, such as logical address 3 maps to physical address 23, 4 maps to 24, 13 maps to 9 and so on. As shown, paging itself is a form of dynamic relocation: each logical address is mapped to some physical addresses.

Paging scheme influences process scheduling. When a process is to be executed, the scheduler checks its size expressed in pages. Available memory is looked for that process. If the process requires n pages, there must be n frames available in memory which must be allocated to this process before it can be executed.

[image: image12.png]CPU

logical address physical address

Page table

2) Principal operation

[image: image13.png]logical memory 4 i

98 !

} 3 Page table it

i

\ o [5 2

HE 1[6 2
58 M 12 Physical
15 g LI memory

il &R

i -

i
«
155 “g
g

) Paging example

Implementation of page table

In the simplest case, the page table is implemented as a set of dedicated registers which should be built from very high-speed logic in order to allow the address translation to be carried out very fast. It is very important, because every access to system memory requires the address translation. The operating system is the only one entity which can reload or modify the page table registers.

In some systems, it is not feasible to use fast registers to implement the page table, hence it must be kept in system memory. A Page Table Base Register PTBR is used to point to the page table in memory. Thus, changing page table requires changing only this one register; the context switching time can be reduced considerably.

Keeping page table in memory may cause unacceptable problem with the duration of access time. As described above, we need two memory accesses to access the required word, one for the page table and one for the word itself. Thus system memory is slowed by a factor of two and this would be intolerable under most circumstances.

To solve this problem associative registers or content-addressable memory can be used in the following way. The page numbers are used to address locations of associative registers whose contents are base addresses of corresponding memory frames. The search can be carried out very fast, but the hardware component is quite expensive.

Associative registers contain only few of the page table entries. When a logical address is generated, its page number is used to address that location of associative registers which contains the corresponding frame number. If the page number is found in the associative registers, i.e. a "match" occurs, its frame number is immediately available, and used to access memory. Otherwise, a memory reference to the page table must be performed and the obtained frame number is used to access memory. Now, these new page number and frame number can be added into the associative registers so that they can be found very quickly on the next reference.

19. Explain different types of directory structures.
Directory Structure

A collection of nodes containing information about all files.

[image: image14.png]

[image: image15.png]Single-Level Directory

- Asinge irsctoryfor il users.

Naring probiem

Grouping prabiem

[image: image16.png]Two-Level Directory

- Separats drectory for ach user.

Patn name
“Can have the sams fls nsms for ifrent user
“Eficant sesronng

“No grouping sapabilty

[image: image17.png]Tree-Structured Directories

Tree-Structured Directories (Cont.)

-Efficient searching

-Grouping Capability

- Current directory (working directory)

- cd /spell/mail/prog

- type list

- Absolute or relative path name

- Creating a new file is done in current directory.

- Delete a file

rm <file-name>

- Creating a new subdirectory is done in current directory.

mkdir <dir-name>

Example: if in current directory /mail

mkdir count
[image: image18.png]Acyclic-Graph Directories

- Have shared subcirsctories snd fes.

OR
20. Explain different disk scheduling strategies.
Disk Scheduling

The operating system is responsible for using hardware efficiently — for the disk drives, this means having a fast access time and disk bandwidth.

Access time has two major components

a. Seek time is the time for the disk are to move the heads to the cylinder containing the desired sector.

b. Rotational latency is the additional time waiting for the disk to rotate the desired sector to the disk head.

Minimize seek time

Seek time (seek distance

Disk bandwidth is the total number of bytes transferred, divided by the total time between the first request for service and the completion of the last transfer.

· Several algorithms exist to schedule the servicing of disk I/O requests.

· We illustrate them with a request queue (0-199).

98, 183, 37, 122, 14, 124, 65, 67

Head pointer 53
FCFS

[image: image19]
SSTF

· Selects the request with the minimum seek time from the current head position.

· SSTF scheduling is a form of SJF scheduling; may cause starvation of some requests.

[image: image20]
SCAN

· The disk arm starts at one end of the disk, and moves toward the other end, servicing requests until it gets to the other end of the disk, where the head movement is reversed and servicing continues.

· Sometimes called the elevator algorithm

[image: image21]
C-SCAN

· Provides a more uniform wait time than SCAN.

· The head moves from one end of the disk to the other. servicing requests as it goes. When it reaches the other end, however, it immediately returns to the beginning of the disk, without servicing any requests on the return trip.

· Treats the cylinders as a circular list that wraps around from the last cylinder to the first one.

[image: image22]
C-LOOK

· Version of C-SCAN

· Arm only goes as far as the last request in each direction, then reverses direction immediately, without first going all the way to the end of the disk.

[image: image23]
Selecting a Disk-Scheduling Algorithm

· SSTF is common and has a natural appeal

· SCAN and C-SCAN perform better for systems that place a heavy load on the disk.

· Performance depends on the number and types of requests.

· Requests for disk service can be influenced by the file-allocation method.

· The disk-scheduling algorithm should be written as a separate module of the operating system, allowing it to be replaced with a different algorithm if necessary.

[image: image24.png]queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183 199
| 1l | |
[

[image: image25.png]queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183 199
| | |
[

[image: image26.png]queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183 199
| | |
[

[image: image27.png]queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

0 14 37 536567 98 122124 183 199
|
[

