Upon completion of this lab, you should be able to:
• recognize the importance of respiration as a source of energy and gas
• determine which of several sugar sources is the most effective fuel
for yeast
• determine how to measure the relative rate of CO2 production
Cells require energy to do their work, whether they are aerobic or anaerobic
in their respiratory requirements. The reactions within cells that use energy
stored in food molecules (such as glucose) to synthesize ATP are referred to
as cellular respiration. Aerobic cellular respiration
requires oxygen as the final electron acceptor. Fermentation does
not require oxygen and uses a different molecule as the final electron acceptor.
The equation for aerobic respiration is below.
C6H12O6 + 6O2 —> 6CO2 + 6 H2O + 36 ATP (38 ATP in prokaryotes)
In aerobic respiration, glucose is completely broken down to CO2 + H2O, but during fermentation, it is broken down only part-way. Much of the energy originally available in glucose remains in the products produced. Plant and fungal cells produce alcohol as a result of fermentation, and animal cells produce lactic acid. The equation for alcohol fermentation is below.
C6H12O6 —> 2CO2 + 2C2H5OH (ethyl alcohol) + 2 ATP
It should be clear from the above equations that aerobic respiration produces much more ATP per glucose molecule than fermentation. The more completely the original fuel molecule is degraded, the more energy will be released.
Yeast is a convenient source of eukaryotic cells. These cells are unusual in that they can survive long durations of dehydration and redevelop living qualities when again hydrated. Yeast cells are also unusual in that they can survive anaerobic conditions by producing ethanol as a waste product. Under aerobic conditions, the yeast break down glucose using oxygen and get more ATP, as in the reaction above. (Also in the presence of oxygen, yeast can utilize their anaerobic waste product of ethanol to produce ATP by sending it back into the Krebs cycle via acetyl CoA.)
In this experiment you will test the ability of yeast to utilize
a number of food sources. Relative gas production will be measured and compared
for each source. The gas being measured is carbon dioxide. The rate of cellular
respiration is proportional to the amount of CO2 produced (see the equation
for fermentation above). In this experiment, we will measure the relative rate
of cellular respiration using several different food sources.
Go to this
link and follow the procedures shown. It will serve as both a review and
a means of thinking about the investigation you will be doing.
5 packets of brewer’s yeast
7 plastic soda or water bottles (.5 liter or smaller)
[They should all be the same size. If soda bottles are used, they must be washed
thoroughly so that no sugar residue is left in the bottle.]
Thermometer, marker pen
Balloons, tape measure, measuring cups
Distilled or bottled water (700 ml ~ 3 cups)
Individual packets of Equal©, Splenda©, Sweet
‘n Low©, Plain Sugar
Small bottles of grape juice, sweetened and unsweetened
Small kettle for heating water,serving bowl that will hold at least 3 cups of
water
Spoon for stirring, Saran Wrap or aluminum foil
Question 1
Construct a graph showing the change in size of the balloon over time for each of the bottles. Submit the graph and your data set to the instructor via email at demmeluth@hotmail.com
Question 2
Considering the results of this experiment, do yeast utilize all sugars equally? Explain.
Question 3
Hypothesize why some sugars were not metabolized while other sugars were.
Question 4
Why do you need to incubate the yeast before you start collecting data?
Question 5
Yeast live in many different environments. Why is the human body an ideal place?