
Abstract

5'-CGGTTTTACT CTTGTGATTT GTTGCATGAT TCTCATATCC ATTTCAACTG GTGTTAACAA ACAGTATCAT TATTTGTTAT GCAGTCACCG AATTCTTAGC ACTCGGTTAC ATGTTTGTAT TCATTTGTTA ACCAAGTTAC CTTTTAATTC TGAAGTTACA ATGAAACTGA AATATCCATT ACAGAATAGC AGAGGAGATT TAACATTCGA AGAAATACAA ACAATTTGAA AGCACATTGT CAAAAAACTA ACAATACATT TGACCTAATG CAATATATAA ACAAAACGTC GCTAAATTCC AGTGTTATTC CAGATTCCCT AATCAAATCA TGGATCCTCT CGAACCCTAT AATAAAATGG ACCATATCAT TATTTTTAAT TATAGCCACT GGGACTACAT TCTTCGGAAA TCTGTTAATA ATTCTTGCTT TTATAACAAA TAGTCGCTTA CGGCGTATAA CGGATCAATA CATTGTTTCG CTTGCTGTGG CTGATCTACT TGTATCGGTC TTAGTGCTGC CTCTGGCTAT CGTTCGTCAG AATTTAGGTT ATTGGCCATT CGAATCTGAT CGATTGTGTC AGTTTTGGTT ATCCGCTAAT ATTGTATTAT GTATGGCATC TATACTAAAT TTATGTTGTA TATCTCTGGA TAGATATATT GCAATCAGCC GTCCAATGAA ATATTTCACA AAGCGTACTC GTTTTACAGC CTCTACAATG ATAGCTGTTG CTTGGATATT ACCACTTATA ACTATGCTTC TCCCCTTTGT TGGTGGGAAT CAGCACACTT TGGGACTTGG ATCATGTCAT ATCACATATA ATAAAGCATA TAGGATTTAT TCTTCAATTG TTGGATTTTT CGGACCATTT CTGCTAATTG CTTATATATA TTTACGAGTG TTTTGGATAA TAAAGCATCG TTTAAAGGTC TTACAAATTA CAAACATTAA ACTTTCCTCA CTCAAAAAAC CTAAATCACA TATTAAAGCG ACACGTAAGC CAGCTCCGAT AATAATAAAT TTGCAACAAG TTTGGGAAAA TATTAAAGGA AAGATTGGCA AAGTAAATAT TTTACGAAAT CAGTCATCTA AATCAAAGAA TACTTGCCCA TATAGTGGCC ATTTTTTCCA TTCTGATGAA AATGGATGTA ATCAAATTTA TGCGAGTTGT TTACTCAACC ACAAACATCC CTTTGATTCT TTTAGAAGTG ATGATATTCT TAATGAAGAA ATCGATAGGA ATTATAGACA AAAAATATTA GATATTAAGA TGAACAAAAC AGATAGAGAA TTTTCTTTGA CATCTCAAGA TCACGTTGAA TTAGATTTCC CCGAACCAAC AGATCAAAAA CTAAAAGTAA TACAAATATT TAATATTTCA ACGTCAGAGA AAGAATTACA AAAGGCGAAT TGGGAACCAA CACCAAATGT AACATTGAAA AGTGAAACAA AACAACATCA ACACGATTAC TTACATAGAA GTAATGAAGA ACAAAAGAAT AAACTAGGAG ACAAACAATT AATTAATTCT TCGAAATTAC CATCATTAAC ATCATTTAGT ATAGATCATA TAAAGAAGCT TCGACGATTG AAATCTTTAC CAAATTTTAA AACAGAATAC AATAAAACAG AACAATCACA AAAGAATCTA ATTTATTATC GACATGATCA TTTCATATTT CATAGGGAAC AAAAAACTGC ATTAATTTTA GCTGCAGTTG TTGGATGTTT TACAATATGT TGGTTTCCAT TTTTTATATG TATTATTGGT GAAGCTATAT GTGATTGTCA ATATTCAAAT ACTATAATTA CATTTGTTTC ATGGTTAGGT TATTTTAATA GTATTTGTAA TCCATTTATA TATGCATTTT TTAAAAAAGA ATATGCCAAA TCATTTAAAT ATATTATTCA AGTTAACAAA TGGAATATTA AAAGCTATAA CCATAAATAA CTGTTATTTT TAAATAAGAA ATAAATCTTT TATTACGAAA AAGAAAAAAA AA-3'

GTGTTTTG------AACAAAAAACTGCA: this is the full third intra-loop (il3) sequence within SmGPCR. It is located between 898-1701 (i.e. 804 bp). It's sequence as following:

[^0]CCCGAACC AACAGAT---- CAAAAAAC TGCA this highlighted region (372bp) of the third intracellular loop (il3) is selected to be amplified by the RPB1(NotI) and RPF2(EcoRI) primers (see below their sequences).

The primers that have been designed to amplify a fragment of SmGPCR/il3 are:

A sense RPF2(EcoRI) sequence: 5' $^{\prime}$ CC "GAATTC" ATGCCCGAACCAACAGA-3'

An antisense RPB1(NotI): 5'-TA 'GCGGCCGC' TGCAGTTTTTTGTTC-3'

where
EcoRI sequence is: $\mathbf{5}^{\prime}$-G/AATTC-3'
and
NotI sequence is: 5'-GC/GGCCGC-3'

These primers will:
(a) Amplify a portion (372bp) of the entire il3 (804bp) of the SmGPCR (2002bp).This segment is 389 bp (after double digestion).
(b) Introduce EcoRI and NotI restriction sites (for integration with an expression vector pET 30 a).

A close examination of the primers will tell:
The total length of each primer is 25 nucleotides.

The sense (RPF2) primer consists of:

(a) 14 nucleotides (underlined) that are identical to the 5^{\prime} end of the $5^{\prime}-3^{\prime}$ (sense) template, which will flank and anneal to the antisense template strand during PCR reaction.
(b) A start codon ATG (highlighted).
(c) The EcoRI sequence (toward the 5' end of this primer) and
(d) CC nucleotides (as GC clamp).

The antisense (RPB1) primer is written as $5^{\prime}-3$ ' mode for convenience. However, if it is written as it should be (i.e. $3^{\prime}-5$ '), it appears as:

3'-CTTGTTTTTTGACGT "CGCCGGCG" AT-5'

and it consists of:
(a) 15 nucleotides (underlined) that are complement to the 3^{\prime} end of the $5^{\prime}-3^{\prime}$ (sense) template, and will anneal to the sense template during PCR reaction.
(b) The NotI sequence and
(c) Two extra nucleotides.

A procedure to write the sequence of the primers

(1) Get the $5^{\prime}-3^{\prime}$ sequence of the DNA template strand.
(2) (A) For the sense primer, it is so easy. You just determine the selected region of the template you wish to amplify and select 15-18 nucleotide sequence at the beginning of that region (i.e. same orientation $5^{\prime}-3{ }^{\prime}$), this is your sense primer. (B) If you wish to add a restriction sequence, T7 RNA polymerase promoter sequence, ..etc, add that sequence in 5'-3' mode before your primer sequence (i.e. at its 5^{\prime} end). The start codon (i.e. ATG) should be located between the restriction and your target sequences. You may add C, G, CC, or GG (CG clamp) to stabilize your primer. Never add $\geq 3 \mathrm{C}$ or 3 G as this will stabilize nonspecific annealing.
(3) For the antisense primer, you should remember that its should be written as $5^{\prime}-3^{\prime}$ (at the end). For now, don't bother yourself, we will modify it later.

Thus, select the last 14-18 nucleotide sequence of the ${ }^{\prime}$ ' end of you selected target (5'-3' sense template DNA strand), write the complement sequence of that sequence. This is $3^{\prime}-5{ }^{\prime}$ orientation of the primer. Add any needed restriction sequence to its right end (i.e. toward 5^{\prime} end) but in its $3^{\prime}-5$ ' orientation too. Do the same for the stopping codon (if needed).

Finally, re-orient the sequence of this primer to be written as $5^{\prime}-3$ style.

Look at the above example and try to apply this procedure. Hope you will find it easy.

[^0]: 5'-GTGTTTTGGA TAATAAAGCA TCGTTTAAAG GTCTTACAAA TTACAAACAT TAAACTTTCC TCACTCAAAA AACCTAAATC ACATATTAAA GCGACACGTA AGCCAGCTCC GATAATAATA AATTTGCAAC AAGTTTGGGA AAATATTAAA GGAAAGATTG GCAAAGTAAA TATTTTACGA AATCAGTCAT CTAAATCAAA GAATACTTGC CCATATAGTG GCCATTTTTT CCATTCTGAT GAAAATGGAT GTAATCAAAT TTATGCGAGT TGTTTACTCA ACCACAAACA TCCCTTTGAT TCTTTTAGAA GTGATGATAT TCTTAATGAA GAAATCGATA GGAATTATAG ACAAAAAATA TTAGATATTA AGATGAACAA AACAGATAGA GAATTTTCTT TGACATCTCA AGATCACGTT GAATTAGATT TCCCCGAACC AACAGATCAA AAACTAAAAG TAATACAAAT ATTTAATATT TCAACGTCAG AGAAAGAATT ACAAAAGGCG AATTGGGAAC CAACACCAAA TGTAACATTG AAAAGTGAAA CAAAACAACA TCAACACGAT TACTTACATA GAAGTAATGA AGAACAAAAG AATAAACTAG GAGACAAACA ATTAATTAAT TCTTCGAAAT TACCATCATT AACATCATTT AGTATAGATC ATATAAAGAA GCTTCGACGA TTGAAATCTT TACCAAATTT TAAAACAGAA TACAATAAAA CAGAACAATC ACAAAAGAAT CTAATTTATT ATCGACATGA TCATTTCATA TTTCATAGGG AACAAAAAAC TGCA -3

