Spectrophotometric Conversions:

Double-stranded DNA (ds DNA):
$\mathrm{A}^{260}=\mathrm{OD}^{260}=1$ for a $50 \mu \mathrm{~g} / \mathrm{mL}$ solution
Single-stranded DNA (ss DNA):
$\mathrm{A}^{260}=\mathrm{OD}^{260}=1$ for a $33 \mu \mathrm{~g} / \mathrm{mL}$ solution
RNA: $\mathrm{A}^{260}=\mathrm{OD}^{260}=1$ for a $40 \mu \mathrm{~g} / \mathrm{mL}$ solution
Reference: Freifelder, D., Physical Biochemistry: Applications to Biochemistry \& Molecular Biology, W.H. Freeman and Company, CA, 1982, p. 494-536.

Useful Equations and Nucleic Acid Molecular Weight Data:
Absorbance $=$ Molar Extinction Coefficient x Concentration x Path length
500 bp of double-stranded DNA $=325,000$ Daltons
500 nt* of single-stranded DNA $=162,500$ Daltons
Average MW of dNMP is 325 Daltons
(*nt = nucleotide)

Oligomer Quantitation:

For a 20-mer, a stock solution with $\mathrm{A}^{260}=1$ contains 5 nmol $5 \mathrm{nmol}=33 \mu \mathrm{~g} /(20 \times 325)$

For a 40-mer, a stock solution with $\mathrm{A}^{260}=1$ contains 2.5 nmol $2.5 \mathrm{nmol}=33 \mu \mathrm{~g} /(40 \times 325)$

Conversion of pmoles of primer to $\mu \mathrm{g}$ of primer:
Multiply pmoles by (length x 325)/1,000,000
Example: 10 pmoles of a 25 -mer
$(10 \times 25 \times 325) / 1,000,000=0.081 \mu \mathrm{~g}$ primer
Conversion of $\mu \mathrm{g}$ of primer to pmoles of primer:
Multiply by $1,000,000 /($ length x 325$)$
Example:
$0.1 \mu \mathrm{~g}$ of a 20 -mer
$(0.1 \times 1,000,000) /(20 \times 325)=15.4$ pmoles primer
Calculating Primer Concentrations for PCR Amplification:
Micromolar concentration of primer $=$ pmoles $/ \mu \mathrm{L}$

Example 1:

20 pmoles of primer in $100 \mu \mathrm{~L}$ PCR mixture $=$
 0.20 micromolar

Example 2:
Primer is 24 nucleotides in length and is dissolved in 0.1 mL of water

A $10 \mu \mathrm{~L}$ aliquot is diluted to 1.0 mL for A^{260} measurement:
$\mathrm{A}^{260}=\mathrm{OD}^{260}=0.76$
The stock solution has an absorbance at $260 \mathrm{~nm}\left(\mathrm{~A}^{260}\right)$ of 76
The stock solution (0.1 mL) contains 7.6 A^{260} units

The base composition of the primer is $A=6, C=6, G=6, T=6$
The Molar Extinction Coefficient at 260 nm for the primer $=a(16,000)+b(12,000)+$ $c(7,000)+d(9,600)$
where: a is the number of A's, b is the number of G's, c is the number of C's, d is the number of T's

The Molar Extinction Coefficient of the PCR primer is:
$6(16,000)+6(12,000)+6(7,000)+6(9,600)=267,600$

The Molar Concentration of the PCR primer stock solution is:
$76 / 267,600=284$ micromolar

