Tutorial Sheets 11 (Answers)

- 1. We just apply the definition each time. We find that R^2 contains all the pairs in $\{1, 2, 3, 4, 5\} \times \{1, 2, 3, 4, 5\}$ except (2, 3) and (4, 5); and R^3 , R^4 , and R^5 contain all the pairs.
- 2. a) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ b) $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$
- 3. a) The matrix for the union is formed by taking the join: $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$
 - b) The matrix for the intersection is formed by taking the meet: $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$
 - b) The matrix is the entry wise XOR: $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$
- 4. a) $R_1 \cap R_2 = \{(b, HKT), (b, IBM), (c, IBM), (c, Orange), (d, HKT), (d, IBM)\}$

Students attend the interviews and are offered the companies.

b)
$$R_1 \setminus R_2 = \{(a, AT \& T), (a, 3Com), (a, IBM), (b, AT \& T), (b, 3Com), (b, Orange), (d, AT \& T)\}$$

Students attend the interviews but are rejected.

c)
$$R_2 \setminus R_1 = \{(c,3Com),(d,Orange)\}$$

Students are offered by the companies but without needing to attend the interviews.