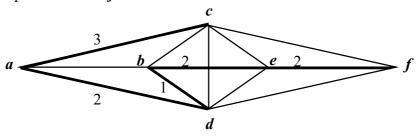
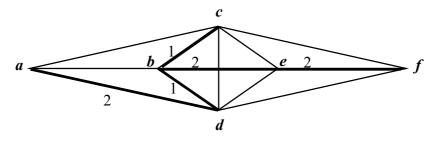
Solution of Test 2 (2001\2002)


- 1. (a) (i) R is **not reflexive** since the statement (2-1)(2-1)>1 is false, i.e. $(2,2)\notin R$.
 - (ii) R is symmetric since (x-1)(y-1)>1 then (y-1)(x-1)>1, i.e. $\forall (x, y) \in R$, $(y, x) \in R$.
 - (iii) R is **not anti-symmetric** since $\exists (x, y) \in R$ and $(y, x) \in R$.
 - (iv) R is **not transitive** since (2-1)(3-1)>1 and (3-1)(2-1)>1 but $(2-1)(2-1)\le 1$.

(b) (i)
$$\begin{array}{c} a & b & c & d \\ a & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ c & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{array})$$
 (ii) Number of walks = $\begin{pmatrix} 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} = 2$ (iii) acb and adb


2. (a)

Solved Nodes Directly Connected to Unsolved Nodes	Closest Connected Unsolved Node	Total Distance Involved	nth Nearest Node	Minimum Distance	Last Connection
а	d	2	d	2	ad
а	с	3	c	3	ac
d	b	2 + 1 = 3	b	3	db
c	e	3 + 3 = 6			
d	e	2 + 4 = 6			
b	e	3 + 2 = 5	e	5	be
e	f	5 + 2 = 7	f	7	ef
c	f	3 + 5 = 8			
d	f	2 + 6 = 8			

The shortest path from a to f:

(b) The minimum weight is **8** and the minimum spanning tree is as shown below:

- 3. (a) $_{5}P_{3} = 60$ (b) $\frac{5!}{2! \times 3!} = 10$ (c) $_{4}P_{3} + _{3}C_{1} \times \frac{3!}{2!} = 33$

CMM1313