

Section A: (5% each)

A1. Using $f^{-1}(p) = (p - 10) \bmod 26$, we have

$$\begin{array}{ll}
 p: & \begin{array}{ccccccccc} Z & K & B & D & S & K & V \\ 25 & 10 & 1 & 3 & 18 & 10 & 21 \end{array} \\
 f^{-1}(p) & \begin{array}{ccccccccc} P & B & K & M & D & S & Y & X \\ 15 & 1 & 10 & 12 & 3 & 18 & 24 & 23 \end{array} \\
 & \begin{array}{ccccccccc} 15 & 0 & 17 & 19 & 8 & 0 & 11 & \\ 5 & 17 & 0 & 2 & 19 & 8 & 14 & 13 \end{array} \\
 & \begin{array}{ccccccccc} P & A & R & T & I & A & L & & F & R & A & C & T & I & O & N \end{array}
 \end{array}$$

Thus, the original message is “PARTIAL FRACTION”.

A2. i) The truth set of a propositional function is the set of elements in its domain that are assigned true propositions by the function.

ii) $x^3 - 2x^2 - x + 2 = (x - 1)(x + 1)(x - 2) = 0$

The three roots are given as follows:

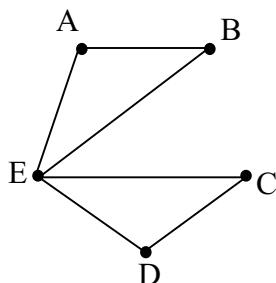
$$x_1 = 1$$

$$x_2 = -1$$

$$x_3 = 2$$

The set of truth values of the propositional function $Q(x)$ is $\{1, -1, 2\}$.

A3. Number of one-digit numbers formed is $C(4, 1) = 4$.


Number of two-digit numbers formed is $P(4, 2) - C(3, 1) = 12 - 3 = 9$.

Number of three-digit numbers formed is $P(4, 3) - P(3, 2) = 24 - 6 = 18$.

Number of four-digit numbers formed is $4! - 3! = 24 - 6 = 18$.

Then total numbers formed are $4 + 9 + 18 + 18 = 49$.

A4. Express the problem in terms of graph by taking the land areas as vertices and the bridges as edges joining the corresponding pairs of vertices

Since every vertex of G has even degree, therefore G is Eulerian.

One of the possible routes is ABECDEA.

<p>A5. i) The required probability is $= \frac{^8C_3}{^{10}C_5} = \frac{56}{252} = \frac{2}{9}$ #</p> <p>ii) The required probability is</p> $= \frac{^4C_3 \cdot ^6C_2}{^{10}C_5} + \frac{^4C_4 \cdot ^6C_1}{^{10}C_5} = \frac{60}{252} + \frac{6}{252}$ $= \frac{66}{252} = \frac{11}{42}$ #	
--	--

A6. We can prove that $n^3 + n$ is even by cases.

Case (i) Suppose that n is even. Then $n = 2k$ for some $k \in N$, so

$$n^3 + n = 8k^3 + 2k = 2(4k^3 + k),$$

which is even.

Case (ii) Suppose that n is odd. Then $n = 2k + 1$ for some $k \in N$, so

$$n^3 + n = (8k^3 + 12k^2 + 6k + 1) + (2k + 1) = 2(4k^3 + 6k^2 + 4k + 1),$$

which is even.

Here is a more elegant proof by cases. Given n in N . We have

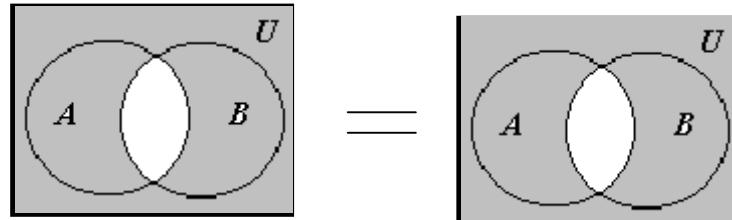
$n^3 + n = n(n^2 + 1)$. If n is even, so is $n(n^2 + 1)$. If n is odd, then n^2 is odd, hence $n^2 + 1$ is even, and so $n(n^2 + 1)$ is even.

A7. i) Assuming it is a Poisson Distribution,

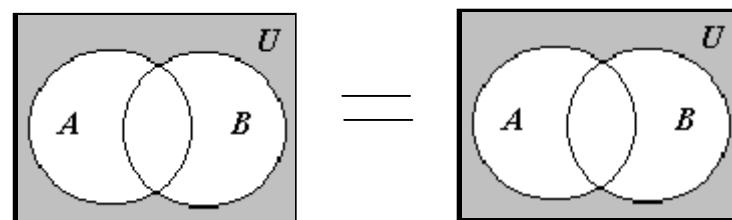
$$\begin{aligned} P(0) &= e^{-3} \\ &= 0.04979 \end{aligned}$$

$$\begin{aligned} \text{ii)} \quad P(X > 3) &= 1 - P(0) - P(1) - P(2) - P(3) \\ &= 1 - e^{-3} - e^{-3}(3) - e^{-3}(3^2)/2! - e^{-3}(3^3)/3! \\ &= 0.3528 \end{aligned}$$

$$\text{A8. i)} \quad AB = \begin{bmatrix} 2 & 7 \\ 7 & 13 \end{bmatrix} \quad BA = \begin{bmatrix} 4 & 7 & 3 \\ 4 & 2 & 6 \\ 7 & 6 & 9 \end{bmatrix}$$


$$\begin{aligned} \text{ii)} \quad A &= \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}^{-1} \begin{bmatrix} 3 & 0 \\ 1 & 2 \end{bmatrix} \\ &\Rightarrow \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}^{-1} = \frac{1}{5} \begin{bmatrix} 4 & -3 \\ -1 & 2 \end{bmatrix} \end{aligned}$$

$$\Rightarrow A = \frac{1}{5} \begin{bmatrix} 4 & -3 \\ -1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 3 & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 9/5 & -6/5 \\ -1/5 & 4/5 \end{bmatrix}$$

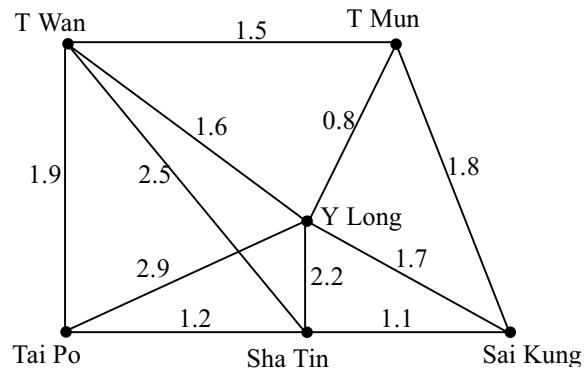

Section B: (12% each)

B1. i) (a) $1+2=3$ books
 (b) $1+2+3+4=10$ books
 (c) 3 books

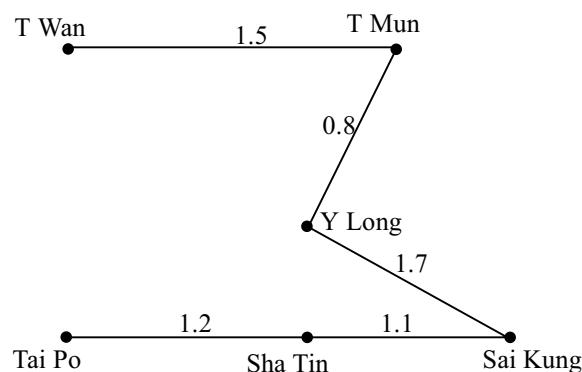
ii) The De Morgan's laws of algebra of sets are $\overline{A \cap B} = \overline{A} \cup \overline{B}$

and $\overline{A \cup B} = \overline{A} \cap \overline{B}$

B2. i)

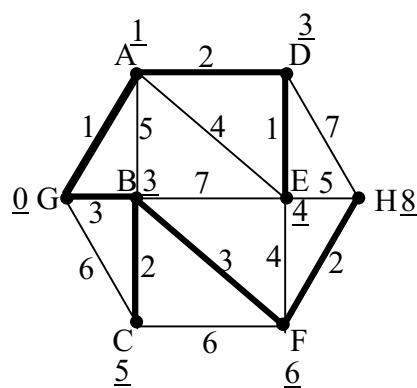

p	q	r	$q \vee r$	$p \vee (q \vee r)$	$\neg r$	$p \vee q$	$[(p \vee (q \vee r)) \wedge (\neg r)] \rightarrow (p \vee q)$	
T	T	T	T	T	F	T	F	T
T	T	F	T	T	T	T	T	T
T	F	T	T	T	F	T	F	T
T	F	F	F	T	T	T	T	T
F	T	T	T	T	F	T	F	T
F	T	F	T	T	T	T	T	T
F	F	T	T	T	F	F	F	T
F	F	F	F	T	T	F	F	T

The statement form $[(p \vee (q \vee r)) \wedge (\neg r)] \rightarrow (p \vee q)$ is a tautology, hence the argument is valid.


ii) (a) Let p = interest rates go up.
 q = stock market prices will go down,
 $p \rightarrow q$
 $\neg p$
 $\therefore \neg q$

(b) The argument in ii)(a) is invalid.

B3. i)
 (a)



b)

c) $\min \text{ cost} = 1.5 + 0.8 + 1.7 + 1.1 + 1.2 = 6.3$ (millions)

ii)

Therefore, the shortest distance from G to D = 3

$$E = 4$$

$$F = 6$$

$$H = 8$$

<p>B4</p> <p>i) (a) $\mu = 100, \sigma = 16$,</p> $\begin{aligned} P(X > 120) &= P[Z > (120-100)/16] \\ &= P[Z > 1.25] \\ &= 0.1057 \end{aligned}$ <p>(b) $P[Z > (X-100)/16] = 0.2$ $(X-100)/16 = 0.84$ $X = 113.4$</p> <p>ii) (a) $P(\text{exactly 2 defective}) = {}_{10}C_2 (0.02)^2 (1-0.02)^8$ $= 0.01531$</p> <p>(b) $P(\text{2 or more will be defective})$ $= 1 - P(\text{no defective}) - P(\text{exactly 1 defective})$ $= 1 - 0.98^{10} - 10 \cdot 0.02 \cdot 0.98^9$ $= 0.0162$</p>																															
<p>B5.</p> <p>i) (a) $(2,1), (3,2), (4,3), (5,4)$.</p> <p>(b)</p> <table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td style="padding: 2px 10px;">R</td> <td style="padding: 2px 10px;">1</td> <td style="padding: 2px 10px;">2</td> <td style="padding: 2px 10px;">3</td> <td style="padding: 2px 10px;">4</td> </tr> <tr> <td style="padding: 2px 10px;">1</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td style="padding: 2px 10px;">2</td> <td style="color: red; text-align: center;">X</td> <td></td> <td></td> <td></td> </tr> <tr> <td style="padding: 2px 10px;">3</td> <td></td> <td style="color: red; text-align: center;">X</td> <td></td> <td></td> </tr> <tr> <td style="padding: 2px 10px;">4</td> <td></td> <td></td> <td style="color: red; text-align: center;">X</td> <td></td> </tr> <tr> <td style="padding: 2px 10px;">5</td> <td></td> <td></td> <td></td> <td style="color: red; text-align: center;">X</td> </tr> </table> <p>(c) $R = \{(a_1, b_2), (a_2, b_1), (a_3, b_1), (a_4, b_3)\}$.</p> <p>ii)</p> <p>(a) The required probability is</p> $= \frac{(0.36) \cdot \left(\frac{1}{6}\right)}{(0.64) \cdot \left(\frac{1}{4}\right) + (0.36) \cdot \left(\frac{1}{6}\right)} = \frac{0.06}{0.22} = \frac{3}{11}$ <p>(ii) The required probability is</p> $= 1 - \left[(0.64) \cdot \left(\frac{1}{4}\right) + (0.36) \cdot \left(\frac{1}{6}\right) \right] = 1 - \frac{11}{50} = \frac{39}{50}$	R	1	2	3	4	1					2	X				3		X			4			X		5				X	
R	1	2	3	4																											
1																															
2	X																														
3		X																													
4			X																												
5				X																											