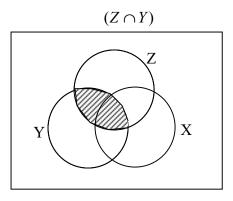
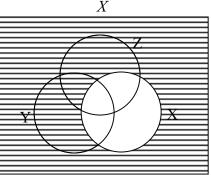
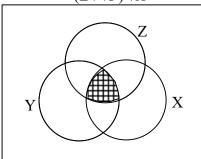
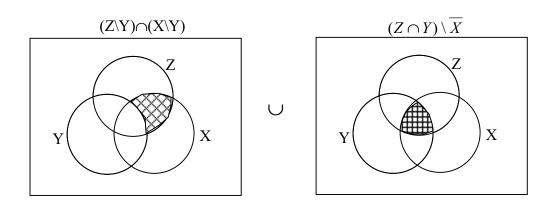
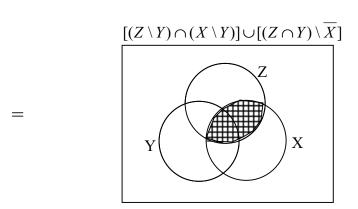

1(a)(i)


$X \backslash Y$


 $(Z\backslash Y) {\cap} (X\backslash Y)$


(ii)





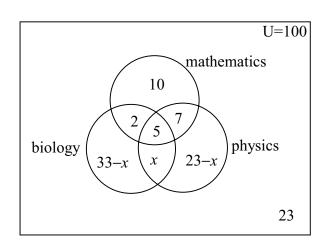
1(b)

 $= X \cap Z$

Therefore the expression is true.

2. Truth Table

p	V	(q	^	r)	\leftrightarrow	(p	V	q)	٨	(p	V	r)
T	T	T	T	T	T	T	T	T	T	T	T	T
T	T	T	F	F	T	T	T	T	T	T	T	F
T	T	F	F	T	T	T	T	F	T	T	T	T
T	T	F	F	F	T	T	T	F	T	T	T	F
F	T	T	T	T	T	F	T	T	T	F	T	T
F	F	T	F	F	T	F	T	T	F	F	F	F
F	F	F	F	T	T	F	F	F	F	F	T	T
F	F	F	F	F	T	F	F	F	F	F	F	F


Therefore, it is a tautology.

$$A^{2} = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 1 \\ 2 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 1 \\ 2 & 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 9 & 6 & 4 \\ 6 & 6 & 5 \\ 4 & 5 & 5 \end{pmatrix}$$

- (b) 9
- 4. Graph A is not Eulerian (∵ deg d = 3 = odd)
 Graph B is Eulerian (∵ all vertices are even degrees).
- 5. Suppose x is a prime, i.e. all its divisors are 1 and x only. Therefore the sum of all its divisors except the number itself = $1 \neq x$. Hence x is not a perfect number. Thus, the statement is proved by indirect proof.
- 6.(a) ${}_{20}C_{10} \times_{10} C_8$ = 8314020
- (b) $f(p) = (p-6) \mod 26$ $f^{-1}(p) = (p+6) \mod 26$

	A	I	I	X	F	O	W	E
p	0	8	8	23	5	14	22	4
$f^{-1}(p)$	6	14	14	3	11	20	2	10
message	G	O	O	D	L	U	C	K

7.(a)(i)

(ii)
$$10 + 2 + 5 + 7 + x + 33 - x + 23 - x + 23 = 100$$
$$x = 3$$

(iii)
$$10 + 30 + 20 = 60$$

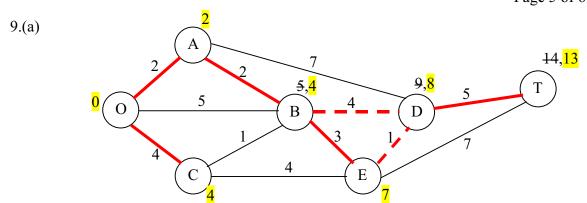
(b)(i) p: printer is defective; q: the power is on; r: LED is blinking.

Symbolic form:

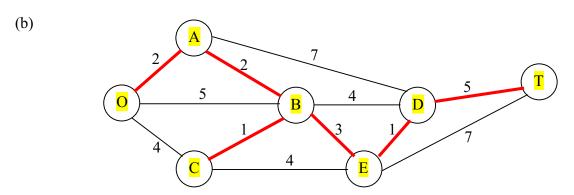
$$\begin{array}{l} q \wedge r \rightarrow p \\ r \rightarrow q \\ \hline \vdots \\ p \end{array}$$

(ii)

(q	٨	r	\rightarrow	p)	٨	(r	\rightarrow	q)	٨	r	\rightarrow	p
	T	T	T	T	T		T		T	T	T		T	T	T	T
	T	F	F	T	T		T		F	T	T		F	F	T	T
	F	F	T	T	T		F		T	F	F		F	T	T	T
	F	F	F	T	T		T		F	T	F		F	F	T	T
	T	T	T	F	F		F		T	T	T		F	T	T	F
	T	F	F	T	F		T		F	T	T		F	F	T	F
	F	F	T	T	F		F		T	F	F		F	T	T	F
	F	F	F	T	F		T		F	T	F		F	F	T	F


The statement form $(q \land r \to p) \land (r \to q) \land r \to p$ is a tautology, hence the argument is valid.

8.(a) R is not reflexive. (Book a cost the same and contains the same pages of book a.) Therefore $(a, a) \notin R$.


Since it is impossible for Book a cost more than Book b cost and Book b cost more than Book a cost (similar to pages comparison), R is not symmetric. But it is anti-symmetric.

If Book a cost more than Book b and Book b cost more than Book c, then Book a cost more than Book b (similar to pages comparison). Therefore, R is transitive.

- (b)(i) $R_1 \cap R_2 = \{(b, HKT), (b, IBM), (c, IBM), (c, Orange), (d, HKT), (d, IBM)\}$ Students attend the interviews and are offered the companies.
 - (ii) $R_1 \setminus R_2 = \{(a, AT \& T), (a, 3Com), (a, IBM), (b, AT \& T), (b, 3Com), (b, Orange), (d, AT \& T)\}$ Students attend the interviews but are rejected.
 - (iii) $R_2 \setminus R_1 = \{(c, 3Com), (d, Orange)\}$ Students are offered by the companies but without needing to attend the interviews.

The smallest distance from O to T is 13. The routes are OABEDT or OABDT

Min total number of miles of line installed = 2 + 2 + 1 + 3 + 1 + 5 = 14 miles

10.(i) Let A: Smart cards from factory I; B: Smart cards from factory II; D: Defective smart cards.

Given
$$P(A) = 2/3$$

 $P(B) = 1/3$
 $P(D \mid A) = 0.2$
 $P(D \mid B) = 0.05$
 $P(D) = P(A)P(D|A) + P(B)P(D|B) = (2/3)(0.2) + (1/3)(0.05) = 0.15$
 $P(\overline{D}) = 1 - 0.15 = 0.85$

(ii)
$$P(A \mid D) = \frac{P(A)P(D \mid A)}{P(D)}$$

$$= \frac{(2/3)(0.2)}{0.15}$$

$$= 0.889$$

11.(a)(i) $\mu = \lambda T = 2 \times 8 = 16$

Therefore, on average, 16 customers arriving in an 8-hour period.

- (ii) P(at least one customer in a 1-hour period)
 - = 1 P(no customer in a 1-hour period)

$$= 1 - \frac{2^{0} e^{-2}}{0!}$$
$$= 0.865$$

(b) $X \sim Bin(3, 0.4)$

$$E(X) = 0 \times p(0) + 1 \times p(1) + 2 \times p(2) + 3 \times p(3)$$

= 0 + 1 \times_3 C_1 (0.4)(0.6)^2 + 2 \times_3 C_2 (0.4)^2 (0.6) + 3 \times_3 C_3 (0.4)^3
= 1.2

12.(a) P(a zero is received correctly)

$$= P(X < 0.4)$$

$$= P(Z < \frac{0.4 - 0}{0.16})$$

$$= P(Z < 2.5)$$

- = 0.9938
- (b) P(a one is received correctly)

$$= P(Y > 0.8)$$

$$= P(Z > \frac{0.8 - 1}{0.09})$$

$$= P(Z > -2.22)$$

- = 0.9868
- (c) P(a digit is received correctly)

$$= 0.5 \times 0.9938 + 0.5 \times 0.9868$$

- = 0.9903
- (d) P(the received signal is interpreted as an error)

$$= 0.5 \times P(0.4 < X < 0.8) + 0.5 \times P(0.4 < Y < 0.8)$$

$$= 0.5 \times P(\frac{0.4 - 0}{0.16} < Z < \frac{0.8 - 0}{0.16}) + 0.5 \times P(\frac{0.4 - 1}{0.09} < Z < \frac{0.8 - 1}{0.09})$$

$$= 0.5 \times P(2.5 < Z < 5) + 0.5 \times P(-6.67 < Z < -2.22)$$

$$= 0.5 \times (1 - 0.9938) + 0.5 \times (1 - 0.9864)$$

= 0.0099