- 1. (a) The position matrix of the object is $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{pmatrix} 3 & 2 & 5 & 5 \\ 1 & 6 & 6 & 1 \end{pmatrix}$
 - (b) Translate such that P_1 is at the origin

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix} - \begin{bmatrix} d_x \\ d_y \end{bmatrix} = \begin{pmatrix} 3 & 2 & 5 & 5 \\ 1 & 6 & 6 & 1 \end{pmatrix} - \begin{pmatrix} 3 & 3 & 3 & 3 \\ 1 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 2 & 2 \\ 0 & 5 & 5 & 0 \end{pmatrix}$$

Rotate 30° clockwise

$$\begin{bmatrix} x_{\theta} \\ y_{\theta} \end{bmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$= \begin{pmatrix} \cos(-30^{\circ}) & -\sin(-30^{\circ}) \\ \sin(-30^{\circ}) & \cos(-30^{\circ}) \end{pmatrix} \begin{pmatrix} 0 & -1 & 2 & 2 \\ 0 & 5 & 5 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} 0 & -1 & 2 & 2 \\ 0 & 5 & 5 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & \frac{5}{2} - \frac{\sqrt{3}}{2} & \frac{5}{2} + \sqrt{3} & \sqrt{3} \\ 0 & \frac{1}{2} + \frac{5\sqrt{3}}{2} & -1 + \frac{5\sqrt{3}}{2} & -1 \end{pmatrix}$$

Translate such that the point at the origin returns to P₁

$$\begin{bmatrix} x_{\theta'} \\ y_{\theta'} \end{bmatrix} = \begin{bmatrix} x_{\theta} \\ y_{\theta} \end{bmatrix} + \begin{bmatrix} d_x \\ d_y \end{bmatrix}$$

$$= \begin{pmatrix} 0 & \frac{5}{2} - \frac{\sqrt{3}}{2} & \frac{5}{2} + \sqrt{3} & \sqrt{3} \\ 0 & \frac{1}{2} + \frac{5\sqrt{3}}{2} & -1 + \frac{5\sqrt{3}}{2} & -1 \end{pmatrix} + \begin{pmatrix} 3 & 3 & 3 & 3 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 3 & \frac{11}{2} - \frac{\sqrt{3}}{2} & \frac{11}{2} + \sqrt{3} & 3 + \sqrt{3} \\ 1 & \frac{3}{2} + \frac{5\sqrt{3}}{2} & \frac{5\sqrt{3}}{2} & 0 \end{pmatrix}$$

CMM1313

- 2. (a) (i) The number of multiplications = $20 \times 50 \times 10 + 20 \times 10 \times 40 = 18000$ The number of additions = $20 \times 49 \times 10 + 20 \times 9 \times 40 = 17000$
 - (ii) The number of multiplications = $50 \times 10 \times 40 + 20 \times 50 \times 40 = 60000$ The number of additions = $50 \times 9 \times 40 + 20 \times 49 \times 40 = 57200$

(b) (i)
$$\mathbf{R} = \{(2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (5, 2), (2, 5), (6, 3), (3, 6), (7, 4), (4, 7), (8, 5), (5, 8), (8, 2), (2, 8)\}$$

(ii) Reflexive

 $\therefore x - x = 0$ which is divisible by 3

 $\therefore xRx$

Symmetric but not anti-symmetric

$$xRy \Rightarrow 3 \text{ divides } x - y$$

 $\Rightarrow 3 \text{ divides } y - x$

 $\Rightarrow yRx$

Transitive

aRb,bRc

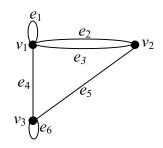
$$\Rightarrow$$
 $(a-b)=3n$ and $(b-c)=3m$ where $n,m \in \mathbb{Z}$

$$\therefore a - c = a - b + b - c = 3n + 3m = 3(n + m)$$

 \Rightarrow 3 divides a - c

 $\Rightarrow aRc$

4. (i)
$$A^2 = \begin{pmatrix} 6 & 3 & 4 \\ 3 & 5 & 3 \\ 4 & 3 & 3 \end{pmatrix}$$
 $A^3 = \begin{pmatrix} 16 & 16 & 13 \\ 16 & 9 & 11 \\ 13 & 11 & 10 \end{pmatrix}$

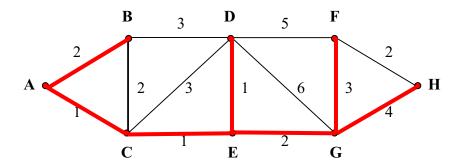

- (ii) The number of walks of length 2 from v_1 to v_3 is 4. The number of walks of length 3 from v_1 to v_3 is 13.
- (iii) The walks of length 2 from v_1 to v_3 are:

$$v_1 e_1 v_1 e_4 v_3$$

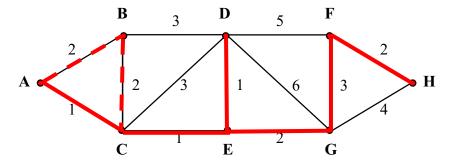
$$v_1 e_2 v_2 e_5 v_3$$

 $v_1 e_3 v_2 e_5 v_3$

 $v_1 e_4 v_3 e_6 v_3$



CMM1313


3. (i) The shortest path from A to H

Iteration n	Solved Nodes Directly Connected to Unsolved Nodes	Closest Connected Unsolved Node	Total Distance Involved	nth Nearest Node	Minimum Distance	Last Connection
1	A	С	1	С	1	AC
	A	В	2	В	2	AB
2	C	Е	2	Е	2	CE
	В	D	5			
3	C	D	4			
	E	D	3	D	3	ED
	D	F	8			
4	E	G	4	G	4	EG
	D	F	8			
5	G	F	7	F	7	GF
	F	Н	9			
6	G	Н	8	Н	8	GH

Graphical representation of the shortest path from A to H and the other points:

(ii) The minimum spanning tree joining the nodes:

Therefore the total minimum distance is 12.

CMM1313 Page 3 of 3