Site hosted by Angelfire.com: Build your free website today!

SENSORES DE ULTRASONIDO


Introducción


Tanto en la actualidad como en el pasado, numerosos robots móviles han utilizado sensores de ultrasonidos para realizar tareas de navegación por el entorno como, por ejemplo, evitar obstáculos, seguir paredes, atravesar puertas, etc. Las razones de su utilización son numerosas y entre ellas cabe destacar su bajo coste, velocidad de procesamiento y una más que aceptable precisión. Sin embargo, la navegación de un robot móvil basada en la información suministrada por un conjunto de sensores de ultrasonidos presenta una serie de inconvenientes debidos, sobre todo, a los numerosos errores que cometen estos sensores en sus medidas.

En efecto, una única medida proporciona poca información acerca del entorno, y mediante la acumulación de la evidencia de una serie de medidas, se incrementa la precisión de la localización de los diversos obstáculos que hay en el entorno. Por tanto, una forma de reducir la incertidumbre intrínseca a los sensores de ultrasonido es la utilización de mapas del entorno donde sucesivamente se vayan plasmando y actualizando las medidas realizadas. Por otro lado, al moverse el robot por el entorno, la incertidumbre en la generación del mapa y su actualización se va acrecentando con el tiempo, debido a que el error en la estimación de la posición del robot respecto a un sistema de referencia general es acumulativo y va creciendo con el tiempo. Por tanto, se debe contar con un procedimiento que permita reducir la incertidumbre de la posición del robot para mantener la coherencia espacial de las diferentes medidas. En definitiva, en la generación y actualización de un mapa basado en la información suministrada por los sensores de ultrasonido embarcados en un robot móvil podemos hablar de dos fuentes de incertidumbre :

  1. .Incertidumbre determinación de la posición de robot, e
  2. .incertidumbre en las propias medidas.
En el presente capítulo haremos en primer lugar una breve descripción de los diferentes errores asociados a los sensores de ultrasonido, pasando a continuación a realizar un estudio más detallado de la incertidumbre asociada a la estimación de la posición del robot. En el apartado siguiente se hará un resumen de las diferentes técnicas utilizadas hasta hoy a la hora de minimizar la incertidumbre de estas dos fuentes. Finalmente, se abordará la descripción del sistema desarrollado incidiendo en el concepto definido en este trabajo como decremento temporal en la certeza de la presencia de obstáculo. Demostraremos cómo con este sencillo principio se puede abordar de una manera fiable las dos fuentes de incertidumbre y se repasarán las diferentes ventajas que se derivan de aplicar este principio a la generación y mantenimiento del mapa de ultrasonidos.


Referencias


  1. Workshop on Visual Behaviors. IEEE Computer Society Press, June 19 1993.
  2. Philip E. Agre and David Chapman. What are plans for? Robotics and Autonomous Systems, 6:17-34, 1990.
  3. John Aloimonos. Purposive and qualitative active vision. In DARPA Image Understanding Workshop, pages 816-828, 1990.
  4. Ronald C. Arkin. Integrating behavioral, perceptual and world knowledge in reactive navigation. In Pattie Maes, editor, Designing Autonomous Agents, March 1989.
  5. N. Ayache and Faugueras. Mantaining representations of the environment of a mobile robot. IEEE Transactions on Robotics and Automation, 5(6):804-819, 1989.
  6. Nicholas Ayache. Artificial Vision for Mobile Robotics; Stereo Vision and Multisensory Perception. MIT Press, 1991.
  7. H.H. Baker and T.O Binford. Depth from edge and intensity-based stereo. In Proceedings of the 7th International Joint Conference, pages 631-636, 1981.
  8. D. H. Ballard. Animate vision. Artificial Intelligence, 48(1):57-86, Feb 1991.
  9. Billur Barshan and Roman Kuc. Differentiating sonar reflections from corners and planes by employing an intelligent sensor. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(6):560-569, June 1990.
  10. Andrew Blake. Animate Vision. MIT Press, 1992.
  11. J. Bohrenstein and Y. Khoren. The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Transactions on Robotics and Automation, 7(3):278-288, June 1991.
  12. J. Bohrenstein and Y. Koren. Real-time obstacle avoidance for fast mobile robots. IEEE Transactions on Systems, Man, and Cybernetics, 19(5):1179-1187, September/October 1989.
  13. J. Bohrenstein and Y. Koren. Histogramic in-motion for mobile robot obstacle avoidance. IEEE Transactions on Robotics and Automation, 7(4):535-539, August 1991.
  14. Johann Bohrenstein and Yoram Koren. Obstacle avoidance with ultrasonic sensors. IEEE J. Robotics and Automation, RA-4(2):213-218, 1988.
  15. Johann Bohrenstein and Yoram Koren. Real-time obstacle avoidance for fast mobile robots. IEEE Transactions on Systems, Man, and Cybernetics, 19(5):1179-1187, September/October 1989.
  16. Johann Bohrenstein and Yoram Koren. Histogramic in-motion mapping for mobile robot obstacle ovoidance. IEEE Transactions on Robotics and Automation, 7(4):535-539, August 1991.
  17. Johann Bohrenstein and Yoram Koren. The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Transactions on Robotics and Automation, 7(3):278-288, June 1991.
  18. Nikolaos G. Bourbakis. Real-time path planning of autonomous robots in a two-dimensional unknown dynamic navigation environment. Journal of Inteligent and Robotic Systems, 4:333-362, 1991.
  19. S.A. Brock-Gunn, G.R. Dowling, and T.J. Ellis. Tracking using colour information. Technical Report TCU/CS/1994/7, City University London, 1994.
  20. Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automatition, RA-2(1):14-23, March 1986.
  21. Rodney A. Brooks. Planning is just a way of avoiding figuring out what to do next. MIT Working Paper 303, September 1987.
  22. Rodney A. Brooks. A robot that walks; emergent behavior from a carefully evolved network. Neural Computation, 1(2):253-262, Summer 1989.
  23. Rodney A. Brooks. The behavior language; user's guide. A.I. Memo 1227, M.I.T., April 1990.
  24. Rodney A. Brooks. Elephants don't play chess. Robotics and Autonomous Systems, 6:3-15, 1990.
  25. Rodney A. Brooks. Intelligence without reason. A. I. Memo 1293, M. I. T. Artificial Intelligence Laboratory, April 1991.
  26. Rodney A. Brooks. Intelligence without representation. Artificial Intelligence, 47:139-159, 1991.
  27. Michael K. Brown. Feature extraction techniques for recognizing solid objects with an ultrasonic range sensor. IEEE Journal of Robotics and Automation, RA-1(4):191-205, December 1985.
  28. David Chapman. Vision, instruction and action. A. I. Technical Report 1204, M. I. T. Artificial Intelligence Laboratory, April 1990.
  29. Jonathan H. Connell. A colony architecture for an artificial creature. M.I.T. A.I. Lab Tech Report 1151, M. I. T. Artificial Intelligence Laboratory, June 1989.
  30. Jonathan H. Connell. SSS: A hybrid architecture applied to robot navigation. Technical report, IBM Research Division, 1991.
  31. D. J. Coombs, T. J. Olson, and C. M. Brown. Gaze Control And Segmentation. In AAAI-90 Workshop on Qualitative Vision, pages 26-30, 29 Jul 1990.
  32. J. L. Crowley. Dynamic world modelling for an intelligent mobile robot. In IEEE Seventh Int. Conf. Pattern Recognition, pages 59-66, August 1984.
  33. C. Darwin. On the Origin of Species by Means of Natural Selection. London: Murray, 1859.
  34. D. Dennet. Consciousness Explained. Back Bay Books, 1991.
  35. Umesh R. Dhond and J. K. Aggarwal. Structure from stereo - a review. IEEE Transactions on Systems, Man and Cybernetics, 19(6):1489-1510, 1989.
  36. Michael Drumheller. Mobile robot localization using sonar. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-9(2):325-332, March 1987.
  37. Alberto Elfes. A distributed control architecture for an autonomous mobile robot. Artificial Intelligence, 1(2):135-144, 1986.
  38. Alberto Elfes. Sonar-based real-world mapping and navigation. IEEE Journal of Robotics and Automation, RA-3(3):249-265, June 1987.
  39. David Kortkamp et al. Integrated mobile-robot design. Winning the AAAI'92 competition. IEEE Expert, pages 61-73, August 1993.
  40. Oren Etzioni and Daniel Weld. A softbot-based interface to internet. Communications of the ACM, 37(4):72-76, July 1994.
  41. Olivier Faugeras. Three-dimensional Computer Vision: A Geometric Viewpoint. MIT Press, 1993.
  42. Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the application of theorem proving to problem solving. Artificial Intelligence, 2:189-208, 1971.
  43. Anita M. Flynn, Rodney A. Brooks, William M. Wells, and David S. Barret. The world's largest one cubic inch robot. In Proceedings IEEE Micro Electro Mechanical Systems, pages 98-101. IEEE, February 1989.
  44. Michael R. Genesereth and Steven P. Ketchpel. Software agents. Communications of the ACM, 37(4):48-54, July 1994.
  45. G. Giralt, R. Chatila, and M. Vaisset. An integrated navigation and motion control system for autonomous multisensory mobile robots. In M. Brady and R. Paul, editors, Firts International Symposium on Robotics Research, 1983.
  46. W.E.L Grimson. Computational experiments with a feature-based stereo algorithm. IEEE Trans. Pattern Anal. Machine Intell., PAMI-7:17-34, January 1985.
  47. N. Gupta and D. Nau. Optimal block's world solution ar NP-hard. Technical report, Computer Science Department, University of Maryland, 1990.
  48. Robert M. Haralick and Linda G. Shapiro. Computer and Robot Vision, volume 1. Addison Wesley, 1992.
  49. S. Harnard. Grounding symbolic capacity in robotic capacity. In L. Steels and R. Brooks, editors, The ``artificial life'' route ro ``artificial intelligence''. New Haven: Lawrence Erlbaum, 1995.
  50. Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems, Man, and Cybernetics, SSC-4(2):100-107, July 1968.
  51. Glenn Healey. Segmenting images using normalized color. IEEE Transactions On Systems, Man and Cybernetics, 22(1):64-73, January/February 1992.
  52. Ian Horswill. Characterizing adaptation by constraint. In Toward a practice of autonomous systems. Proceedings of the First European Conference on Artificial Life, pages 58-63. MIT Press/Bradford Books, 1992.
  53. Ian Douglas Horswill and Rodney Allen Brooks. Situated vision in a dynamic world: Chasing objects. AAAI-88, pages 796-800, 1988.
  54. S. Stharama Iyengar and Alberto Elfes. Autonomous Mobile Robots: Perception, Mapping, and Navigation, volume 1. IEEE Computer Society Press, 1991.
  55. Leslie Pack Keabling and Stanley J. Rosenschein. Action and planning in embedded agents. Robotics and Autonomous Systems, 6:35-48, 1990.
  56. O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In IEEE International Conference on Robotics and Automation, pages 500-505, March 1985.
  57. H. Kimura and J.J.E. Slotine. Adaptive visual tracking and caussian network algorithms for robotic catching. In Advances In Robust and Non-Linear Control Systems, pages 67-74, November 1992.
  58. Gudrun J. Klinker, Steven A. Shafer, and Takeo Kanade. The measurement of highlights in color images. International Journal of Computer Vision, 2:7-32, 1988.
  59. Stephen M. Kosslyn and Olivier Koenig. Wet Mind: The New Cognitive Neuroscience. The Free Press, New York, 1992.
  60. David J. Kriegman, Ernst Triendl, and Thomas O. Binford. Stereo vision and navigation in buildings for mobile robots. IEEE Transactions on Robotics and Automation, 5(6):332-343, December 1989.
  61. John J. Leonard and Hugh F. Durrant-Whyte. Dynamic map building for an autonomous mobile robot. The International Journal of Robotics Research, 11(4):286-298, August 1992.
  62. Steven Levy. Artificial Life; A Report From The Frontier Where Computers Meet Biology. Pantheon Books, 1992.
  63. Tomás Lozano-Pérez. Spatial planning: A configuration space approach. IEEE Transactions on Computers, C-32(2):395-407, February 1983.
  64. Tomás Lozano-Pérez and Michael A. Wesley. An algorithm for planning collision-free paths among polyedral obstacles. Comunications of the ACM, 22(10):560-570, 1979.
  65. Pattie Maes. The dynamics of action selection. In IJCAI-89, pages 991-997, 1989.
  66. Pattie Maes. Behavior-based artificial intelligence. In Prooceedings of the second Conference on Adaptative Behavior. MIT Press, 1993.
  67. Pattie Maes. Modeling adaptive autonomous agents. In Artificial Life 1, pages 135-162. MIT Press, 1994.
  68. S. Tanveer F. Mahmood. Attentional selection in object recognition. AI-Technical Report-1420, MIT, 1993.
  69. Chris Malcolm and Tim Smithers. Symbol grounding via a hybrid architecture in an autonomous assembly system. Robotics and Autonomous Systems, 6:123-144, 1990.
  70. S.B. Maraphane and M.M. Trivedi. Region-based stereo analysis for robotic applications. IEEE Transactions on Systems, Man and Cybernetics, 19(6):1447-1464, November/December 1989.
  71. D. Marr and T. Poggio. A computational theory of human stereo vision. Proc. Royal Soc. London, B 204:301-328, 1979.
  72. D. C. Marr. Vision. Freeman San Francisco CA, 1982.
  73. Maja Mataric. Behavior-based architectures for intelligent control. Workshop on Intelligent Autonomous Control Systems, November 1992.
  74. Maja Mataric. A distributed model for mobile robot environment-learning and navigation. Technical Report AI-TR-1228, MIT Artificial Intelligence Laboratory, 1992.
  75. Maja Mataric. Interaction and intelligent behavior. Technical Report AI-TR-1495, MIT Artificial Intelligence Laboratory, 1994.
  76. G. Medioni and R. Nevatia. Segment-based stereo matching. Comput. Vision, Graphics Image Processing, 31:2-18, July 1985.
  77. H. P. Moraveck. Towards automatic visual obstacle avoidance. Proceedings of the 5th International Joint Conference on Artificial Intelligence (IJCAI), page 584, August 1977.
  78. H. P. Moraveck. Sensor fusion in certainty grids for mobile robots. AI Mag., pages 61-74, Summer 1988.
  79. Hans Moraveck. Mind Children. The Future of Robot, and Human Intelligence. Harvard University Press, 1988.
  80. Fabrice R. Noreils and Raja G. Chatila. Plan execution monitoring and control architecture for mobile robots. IEEE Journal of Robotics and Automatition, 11(2):255-266, April 1995.
  81. Y. Ohta and T. Kanade. Stereo by Intra- and Inter-scanline Search Using Dynamic Programming. IEEE Trans. Pattern Anal. Machine Intell., 7(2):139-154, March 1985.
  82. David W. Payton. Internalized plans: A representation for action resources. Robotics and Autonomous Systems, 6:89-103, 1990.
  83. J. Ross, Joey Griffith, Ralf R. Kohler, Allen R. Hanson, and Edward M. Riseman. Segmenting images using localized histograms and region merging. International Journal of Computer Vision, 2:311-347, 1989.
  84. Miguel Schneider-Fontán and Lourdes Agapito. An image processing environment based on object oriented programming. In Proceedings of the Second International Congress on Signal Processing Applications and Tecnology, pages 497-502. DSP Associates, 1993.
  85. Miguel Schneider-Fontán and Maja J Mataric. A study of territoriality: The role of critical mass in adaptive task division. In From Animals to Animats 4, Fourth International Conference on Simulation of Adaptive Behavior. MIT Press, 1996.
  86. Luc Steels. The artificial roots of artificial intelligence. Artificial Life 1, pages 75-100, 1994.
  87. I. Thomas, E. Simonelli, and R. Bajcsy. Spherical retinal flow for a fixating observer. In Workshop On Visual Behaviors: Computer Vision and Pattern Recognition, pages 37-44, June 19 1994.
  88. Alan M. Thomson. The navigation system of the JPL robot. In Proceedings of the International Joint Conference on Artificial Inteligence, pages 749-757, 1977.
  89. A. Treisman. The perception of features and objects. In A. Baddeley and L. Weiskrants, editors, Attention: Selection, Awareness and Control, pages 5-35. Clarendon Press, 1993.
  90. J. K. Tsotsos. Analyzing vision at the complexity level. Behavioral and Brain Sciences, 13:423-469, 1990.
  91. W. Y. K. Wai and J. K. Tsotsos. Directing attention to onset and offset of image events for eye-head movement control. In Workshop On Visual Behaviors: Computer Vision and Pattern Recognition, pages 79-84, 1994.
  92. Barbara Webb. Perception in Real and Artificial Insects: A Robotic Investigation in Cricket Photonaxis. PhD thesis, University of Edimburgh, 1993.
  93. Anne Wright. A high speed low lattency portable vision sensing system. In David P. Casasent, editor, Intelligent Robots and Computer Vision XII: Algorithms and Techniques, volume 2055, pages 263-270, August 1993.
    continuar con la exposición del tema


    Email: itcmex_area_tecnica@usa.net