

Math 1120, Fall 2000: Sample Midterm 3

1. $\lim_{x \rightarrow \infty} \frac{x^3 - 4x + 1}{2x^3 + 2x + 1} = \lim_{x \rightarrow \infty} \frac{1 - 4/x^2 + 1/x^3}{2 + 2/x^2 + 1/x^3} = \frac{1}{2} \cdot \lim_{x \rightarrow -\infty} \frac{x^4 + 3x - 1}{x^2 + 7x - 2} = \lim_{x \rightarrow -\infty} \frac{x^2 + 3/x - 1/x^2}{1 + 7/x - 2/x^2} = \infty.$
 The first function has a horizontal asymptote of $y = \frac{1}{2}$, the second has no horizontal asymptote.

2. (a) $f'(x) = 20x^4 + 6x^{-3} + \frac{5}{2}x^{-1/2} - 2e^x + 6 \cos x$

(b) $g'(x) = \left(\frac{1}{x} + 4 \sin x\right)(\tan x + \sec x) + (\ln x - 4 \cos x)(\sec^2 x + \sec x \tan x)$

(c) $h'(x) = \frac{\left(\frac{1}{3}x^{-2/3}\right)(x-3)e^x - (x^{1/3} + 4)[e^x + (x-3)e^x]}{(x-3)^2 e^{2x}}$

(d) $f'(x) = \frac{1}{\sqrt{1 - (x^2 + 1)^2}} 2x$

(e) $\ln(5)5^{x^3}(3x^2) \log_4(x^5 - 4x) + 5^{x^3} \frac{1}{(\ln 4)(x^5 - 4x)}(5x^4 - 4)$

(g) $\frac{\frac{1}{1 + e^{2\sqrt{x}}} e^{\sqrt{x}} \frac{1}{2} x^{-1/2} x \ln x - \tan^{-1}(e^{\sqrt{x}})(\ln x + 1)}{(x \ln x)^2}$

3. $f'(x) = g'(x)h(x) + g(x)h'(x)$, so $h'(x) = \frac{f'(x) - g'(x)h(x)}{g(x)} = \frac{f'(x) - g'(x)f(x)/g(x)}{g(x)} = \frac{f'(x)g(x) - g'(x)f(x)}{g(x)^2}.$

4. $f'(x) = \frac{(1 + 3e^{3x})(\sqrt{x} + 1) - (x + e^{3x})/(2\sqrt{x})}{(\sqrt{x} + 1)^2}$. $f'(4) = \frac{3(1 + 3e^{12}) - (4 + e^{12})/4}{9} = \frac{35e^{12} + 12}{36}$. The tangent line is $y - \frac{4 + e^{12}}{5} = \frac{35e^{12} + 12}{36}(x - 4)$, or $y = \frac{35e^{12} + 12}{36}(x - 4) + \frac{4 + e^{12}}{5}$.

5. (a) $f'(x) = \frac{3x^2(x^3 + 1) - (x^3 - 1)3x^2}{(x^3 + 1)^2} = \frac{3x^5 + 3x^2 - 3x^5 + 3x^2}{(x^3 + 1)^2} = \frac{6x^2}{(x^3 + 1)^2}.$

$$f''(x) = \left(\frac{6x^2}{(x^3 + 1)(x^3 + 1)} \right)' = \frac{12x(x^3 + 1)^2 - 6x^2(3x^2(x^3 + 1) + (x^3 + 1)3x^2)}{(x^3 + 1)^4} = \frac{(x^3 + 1)(12x(x^3 + 1) - 6x^2(6x^2))}{(x^3 + 1)^4} = \frac{-24x^4 + 12x}{(x^3 + 1)^3}.$$

(b) A local max or min can only occur where $f'(x)$ is discontinuous or zero. The zeroes of $f'(x)$ are $x = 0$ and the discontinuities are $x = -1$. Since $f'(x) = 6 \left(\frac{x}{x^3 + 1} \right)^2$ it is always greater than or equal to 0 so that $f(x)$ is always increasing (though not at -1 , of course!). There can be no local maxima or minima and so there can be no global maxima or minima.

$f(x)$ has an inflection point at a if the concavity changes at $x = a$ and $f(x)$ is defined at $x = a$, which can only happen at discontinuities or zeroes of $f''(x)$. The zeroes of $f''(x)$ are $12x(1 - 2x^3) = 0$ or $x = 0$ and $x = \frac{1}{\sqrt[3]{2}}$ and the discontinuities are $x = -1$.

Math 1120, Fall 2000: Sample Midterm 3

	-1	0	$1/\sqrt[3]{2}$	
$12x$	-	-	+	+
$1 - 2x^3$	+	+	+	-
$(x^3 + 1)^3$	-	+	+	+
$f''(x)$	+	-	+	-

The inflection points are $x = 0$ and $x = \frac{1}{\sqrt[3]{2}}$.

6. The race track principle states that if $f(a) = g(a)$ and $f'(x) > g'(x)$ for all $x > a$ then $f(x) > g(x)$ for all $x > a$. Using $f(x) = e^x$, $g(x) = 1 + x + \frac{x^2}{2}$ and $a = 0$ we see that $f(0) = e^0 = 1 = 1 + 0 + \frac{0^2}{2} = g(0)$. $f'(x) = e^x$, $g'(x) = 1 + x$ and we know that $f'(x) = e^x > 1 + x = g'(x)$. The hypotheses of the race track principle are satisfied so that $e^x > 1 + x + \frac{x^2}{2}$ for all $x > 0$.

7. We first see what has to happen at $x = 0$. The joining curve $y = f(x)$ must satisfy $f(0) = a_0 = 0$ (it must join the piece along the negative x -axis), $f'(x) = a_1 + 2a_2x + 3a_3x^2 + 4a_4x^3 + 5a_5x^4$ and $f'(0) = a_1 = 0$ (the first derivatives must match), $f''(x) = 2a_2 + 6a_3x + 12a_4x^2 + 20a_5x^3$ and $f''(0) = a_2 = 0$ (the second derivatives must match). At $x = 1$, $f(1) = a_3 + a_4 + a_5 = 1$, $f'(1) = 3a_3 + 4a_4 + 5a_5 = 1$ and $f''(1) = 6a_3 + 12a_4 + 20a_5 = 0$ (since if $g(x) = x$, $g''(x) = 0$). The equations are:

$$\begin{aligned} a_0 &= 0 \\ a_1 &= 0 \\ a_2 &= 0 \\ a_3 + a_4 + a_5 &= 1 \\ 3a_3 + 4a_4 + 5a_5 &= 1 \\ 6a_3 + 12a_4 + 20a_5 &= 0 \end{aligned}$$

8. We seem to be differentiating $f(x) = \cos x$ at $x = \frac{\pi}{3}$. Checking this, $[\cos x]' \Big|_{\pi/3} = \lim_{h \rightarrow 0} \frac{\cos(\frac{\pi}{3} + h) - \frac{1}{2}}{h}$, which is what we started with. The value of the limit is $-\sin(\frac{\pi}{3}) = -\sqrt{\frac{3}{2}}$.

9. (a) $2x + 5y + 5xy' + 2yy' = -5$, $y' = \frac{-2x - 5y - 5}{5x + 2y}$. At $(1, -2)$, $y' = \frac{3}{1} = 3$ and the tangent line is $y + 2 = 3(x - 1)$, or $y = -3x - 5$.

(b) The tangent line will be vertical when the slope is either $\pm\infty$. This occurs only when $5x + 2y = 0$, or $y = -\frac{5x}{2}$. Substituting into the original equation, $x^2 - \frac{25x^2}{2} + \frac{25x^2}{4} = -5x$, $-\frac{21}{4}x^2 + 5x = 0$ and $x(-\frac{21}{4}x + 5) = 0$. The tangent line will be vertical at $(0, 0)$ and $(\frac{20}{21}, -\frac{50}{21})$.

10. We know that $\frac{dv}{dt} = 9 - 0.9t$ so that $v = 9t - 0.45t^2 + C$. Since the initial speed is 10m/s, $v(0) = 10 = C$ and $v = 9t - 0.45t^2 + 10$. After 10s the raindrop is falling at a rate of $90 - 45 + 10 = 55$ m/s.

11. $y' = 4A \cos 4x - 4B \sin 4x$, and $y'' = -16A \sin 4x - 16B \cos 4x$. We have $y'' + 16y = -16A \sin 4x - 16B \cos 4x + 16(A \sin 4x + B \cos 4x) = 0$. If $y(0) = 1$, $B = 1$, and if $y'(0) = 2$, $4A = 2$ and $A = \frac{1}{2}$. $y = \frac{1}{2} \sin 4x + \cos 4x$.