

Math 1120, Fall 2000: Solutions to Midterm 3

1. (a) $f'(x) = -3\frac{1}{x^4} - \frac{1}{2\sqrt{x}} - (\ln 4)4^x + \frac{1}{x} - \frac{3}{1+x^2}$

(b) $(\cos x + 2 \sec x \tan x)(\tan x - \log_3 x + 2 \sin^{-1}(x)) + (\sin x + 2 \sec x)(\sec^2 x - \frac{1}{(\ln 3)x} + \frac{2}{\sqrt{1-x^2}})$

(c) $\frac{(1-(1/x))(2 \cos x - 4) - (x - \ln x)(-2 \sin x)}{(2 \cos x - 4)^2} = \frac{(1-(1/x))(2 \cos x - 4) + 2(x - \ln x) \sin x}{(2 \cos x - 4)^2}$

(d) $2x e^{x^2+3}$

(e) $(\ln 3)3^{x/(x-3)}[\frac{x-3-x}{(x-3)^2}] = -(\ln 3)3^{x/(x-3)}[\frac{3}{(x-3)^2}]$

(f) $\frac{1}{|2x|\sqrt{4x^2-1}} \cos(x^2+2x) - \sec^{-1}(2x) \sin(x^2+2x)(2x+2)$

2. $\lim_{x \rightarrow \infty} \frac{5}{3+2f(x)} = \frac{5}{3 + \lim_{x \rightarrow \infty} f(x)} = \frac{5}{3}$

3. $f'(x) = -\frac{2}{\sqrt{1-4x^2}}$, $f'(\frac{1}{4}) = -\frac{2}{\sqrt{1-4(1/16)}} = -\frac{2}{\sqrt{3/4}} = -\frac{4}{\sqrt{3}}$. When $x = \frac{1}{4}$, $f(\frac{1}{4}) = \cos^{-1}(\frac{1}{2}) = \frac{\pi}{3}$.
The tangent line is $y - \frac{\pi}{3} = -\frac{4}{\sqrt{3}}(x - \frac{1}{4})$, or $y = -\frac{4}{\sqrt{3}}x + \frac{1}{\sqrt{3}} + \frac{\pi}{3}$.

4. If f is differentiable at a it is continuous there. We need to match function values and derivatives at -1 and 1 .

$$f'(x) = \begin{cases} 2x & \text{if } x < -1 \\ a_1 + 2a_2 x + 3a_3 x^2 & \text{if } -1 < x < 1 \\ -2 & \text{if } x > 1 \end{cases}$$

At -1 , $(-1)^2 = 1 = a_0 - a_1 + a_2 - a_3$ and $2(-1) = -2 = a_1 - 2a_2 + 3a_3$.

At 1 , $-2(1) + 1 = -1 = a_0 + a_1 + a_2 + a_3$ and $-2 = a_1 + 2a_2 + 3a_3$. We have:

$$a_0 - a_1 + a_2 - a_3 = 1$$

$$a_1 - 2a_2 + 3a_3 = -2$$

$$a_0 + a_1 + a_2 + a_3 = -1$$

$$a_1 + 2a_2 + 3a_3 = -2$$

5. (a) $6x - 4y - 4x \frac{dy}{dx} + 2y \frac{dy}{dx} = 0$. At $(-1, 2)$, $-6 - 8 + 4 \frac{dy}{dx} + 4 \frac{dy}{dx} = 0$ and $\frac{dy}{dx} = \frac{14}{8} = \frac{7}{4}$. The tangent line is $y - 2 = \frac{7}{4}(x + 1)$ or $y = \frac{7}{4}x + \frac{15}{4}$.

(b) From (a), $\frac{dy}{dx} = \frac{4y - 6x}{2y - 4x} = \frac{2y - 3x}{y - 2x}$. $\frac{dy}{dx} = 2$ if $\frac{2y - 3x}{y - 2x} = 2$, $2y - 3x = 2(y - 2x)$, $2y - 3x = 2y - 4x$, $3x = 4x$, or $x = 0$. If $x = 0$, $f(0, y) = y^2 = 15$ and $y = \pm\sqrt{15}$.

The two points at which the curve has slope 2 are $(0, \sqrt{15})$ and $(0, -\sqrt{15})$.

6. (a) f increases when f' is positive and f decreases when f' is negative. f' has zeroes at $x = 1$ and is discontinuous at $x = -2$.

Math 1120, Fall 2000: Solutions to Midterm 3

	-2	1	
$(x-1)^2$	+	+	+
$x+2$	-	+	+
$f'(x)$	-	+	+

f is increasing for $x \in (-2, 1) \cup (1, \infty)$ and decreasing for $x \in (-\infty, -2)$.

f is concave up when f'' is positive and concave down when f'' is negative. f' is zero for $x = -5, 1$ and discontinuous for $x = -2$.

	-5	-2	1	
$x-1$	-	-	-	+
$x+5$	-	+	+	+
$(x+2)^2$	+	+	+	+
$f''(x)$	+	-	-	+

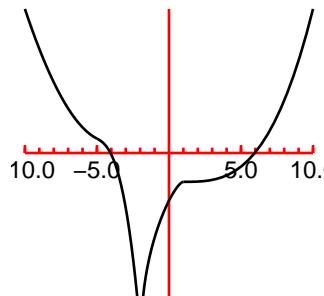
f is concave up for $x \in (-\infty, -5) \cup (1, \infty)$ and concave down for $x \in (-5, -2) \cup (-2, 1)$.

$$(b) \lim_{x \rightarrow \infty} f'(x) = \lim_{x \rightarrow \infty} \frac{x^2 - 2x + 1}{x + 2} = \lim_{x \rightarrow \infty} \frac{x - 2 + 1/x}{1 + 2/x} = \infty.$$

$$\lim_{x \rightarrow -\infty} f'(x) = \lim_{x \rightarrow -\infty} \frac{x - 2 + 1/x}{1 + 2/x} = -\infty$$

$$\lim_{x \rightarrow -2^-} f'(x) = -\infty, \lim_{x \rightarrow -2^+} f'(x) = -\infty$$

(c)



7. This was ignored in grading the midterm since the first step was not entirely obvious. We want to compare $f'(x)$ and $g(x) = \frac{f(x) - f(a)}{x - a}$ for $x > a$ using the Race Track Principle. Ideally, we would show that $f'(a) = g(a)$ and obtain some inequality in their derivatives. However, $g(a) = \frac{f(a) - f(a)}{a - a}$ is not defined. Instead, we consider $h(x) = (x - a)f'(x)$ and $g(x) = f(x) - f(a)$.

- $h(a) = 0$ and $g(a) = 0$ so $h(a) = g(a)$
- $h'(x) = f'(x) + (x - a)f''(x)$ and $g'(x) = f'(x)$. Since $x > a$, $x - a > 0$, and since $f''(x) < 0$, $(x - a)f''(x) < 0$ as well. $h'(x) < f'(x) = g'(x)$

By the Race Track Principle, $h(x) < g(x)$ for all $x > a$ so that

$$(x - a)f'(x) < f(x) - f(a)$$

$$f'(x) < \frac{f(x) - f(a)}{x - a}$$

8. Since velocity is the derivative of position, $x(t) = \frac{4^t}{\ln 4} - \frac{t^{e+1}}{e+1} + C$. $x(0) = 3 = \frac{4^0}{\ln 4} + C$ and $C = 3 - \frac{1}{\ln 4}$.
 $x(t) = \frac{4^t}{\ln 4} - \frac{t^{e+1}}{e+1} + 3 - \frac{1}{\ln 4}$.

9. $f'(x) = 2Ae^{2x} \sin 3x + 3Ae^{2x} \cos 3x$,

Math 1120, Fall 2000: Solutions to Midterm 3

$$\begin{aligned}f''(x) &= 4Ae^{2x} \sin 3x + 6Ae^{2x} \cos 3x + 6Ae^{2x} \cos 3x - 9Ae^{2x} \sin 3x = -5Ae^{2x} \sin 3x + 12Ae^{2x} \cos 3x. \\y'' - 4y' + 13y &= -5Ae^{2x} \sin 3x + 12Ae^{2x} \cos 3x - 4(2Ae^{2x} \sin 3x + 3Ae^{2x} \cos 3x) + 13Ae^{2x} \sin 3x \\&= (-5 - 8 + 13)Ae^{2x} \sin 3x + (12 - 12)Ae^{2x} \cos 3x \\&= 0.\end{aligned}$$

If $f'(0) = 1$, $f'(0) = 3A = 1$ and $A = \frac{1}{3}$.