REFERENCE PAGES

STATISTICS

DESCRIPTIVE STATISTICS

1. Sample mean:
$$\overline{X} = \frac{1}{n} \left(\sum_{i=1}^{n} X_i \right)$$

3. Skewness (asymmetry): $\gamma_1 = \frac{\mu^3}{\sigma^3}$

RULES OF THUMB

 $P(|X-\mu| < 1\sigma) = 0.6826$

5. $P(|X - \mu| < 2\sigma) = 0.9544$

$$P(|X-\mu| < 3\sigma) = 0.9973, "3\sigma \text{ rule"}$$

CONFIDENCE INTERVAL ESTIMATION

- 6. Confidence interval of μ when σ^2 is known, using normal distribution:
 - a) 95% confidence interval: $\left[\overline{X} 1.96\frac{\sigma}{\sqrt{n}}, \overline{X} + 1.96\frac{\sigma}{\sqrt{n}}\right]$, b) 90% confidence interval: $\left[\overline{X} - 1.645\frac{\sigma}{\sqrt{n}}, \overline{X} + 1.645\frac{\sigma}{\sqrt{n}}\right]$.
- 7. Confidence interval of μ when σ^2 is unknown, using t-distribution:

$$T = \frac{\overline{X} - \mu}{\sqrt{s_n^2/n}} \sim t(n-1).$$

HYPOTHESIS TESTING

8. One-tail Procedure Example:

1) $H_0: \mu = 0, H_1: \mu > 0$ [one tail]

2) $\overline{X} = 0.031$, $s_n^2 = 0.0001$, n = 13 [b/c σ^2 is unknown, use t-distribution]

$$t = \frac{\overline{X} - \mu}{\sqrt{s_n^2/n}} = \frac{(0.031 - 0)\sqrt{13}}{.01} = 11.18 \sim t(12)$$

$$|\alpha = 0.05, \ t_{\alpha} = 1.782 < 11.18 = t$$

4) We reject H_0 .

3)

- 9. Two-tail Procedure Example:
 - 1) $H_0: \sigma^2 = 0.4, H_1: \sigma^2 \neq 0.4$ [two tail] 2) $s_n^2 = 0.0159, n = 100$ [b/c testing for population variance, use χ^2 -distribution]

$$\chi^{2} = \frac{(n-1)s_{n}^{2}}{\sigma^{2}} \sim \chi^{2}(n-1) = \frac{(99)(0.0159)}{0.4} = 3.935 \sim \chi^{2}(99)$$

3) $|\alpha = 0.05, 3.935 < 74$

3) $|\alpha = 0.05, 3.9$ 4) We reject H_0 .

- 2. Sample variance: $s_n^2 = \frac{1}{n-1} \left(\sum_{i=1}^n (X_i \overline{X})^2 \right)$
- 4. Kurtosis (peakedness): $\gamma_2 = \frac{\mu^4}{\sigma^4}$

STATISTICS

NORMAL DISTRIBUTION OR N > 30 AND σ_i KNOWN

10. One-sample z-test: z = (X̄ - μ₀ / (σ/√n)), distribution of sample mean.
11. Two-sample z-test: z = ((X̄ - X̄ 2) - (μ₁ - μ₂)) / √(σ₁ + σ₂) / √(σ₁ + σ₂)), distribution of independent sample means.
t DISTRIBUTION OR N < 30 AND σ₁ UNKNOWN, BUT EQUAL
12. One-sample t-test: T = (X̄ - μ₀ / (s_n/√n)), df = n - 1, distribution of sample mean.
13. If X ~ N(0,1) and Y ~ χ²(n), then T = X / √(Y/n), df = n, distribution of X related to sample mean and Y related to sample variance, then their ratio has to do with t-distribution.
14. Two-sample t-test: T = (X̄ - Ȳ / √(1/n_x + 1/n_y) √((n_x-1)x₂² + (n_y-1)x₂²) / √(1/n_x + n_y - 2)), assuming X ~ N(μ₁, σ²), Y ~ N(μ₂, σ²), and H₀ : μ₁ = μ₂.
15. As n → 30, t-distribution converges to normal distribution.

16. One-sample χ^2 test: $\chi^2 = \frac{(n-1)s_n^2}{\sigma^2} \sim \chi^2(n-1)$, distribution of sample variance.

F-DISTRIBUTION

17. If $X \sim \chi^2(m)$ and $Y \sim \chi^2(n)$, then $F = \frac{(X/m)}{(Y/n)} \sim F(m,n)$, ratios of two sets of sample

variances have to do with F-distribution.

18. ANOVA uses F-distribution.