REFERENCE PAGES

LINEAR ALGEBRA

VECTOR SPACES

1. A vector space V over a field \mathcal{F} consists of a set on which two operations (addition and scalar multiplication, respectively) are defined so that $\forall x, y \in V, \exists!x+y \in V$, and $\forall a \in \mathcal{F}$ and $x \in V, \exists!a x \in V$, such that the following conditions hold:
a) $\forall x, y \in V, x+y=y+x$ (commutativity of addition)
b) $\forall x, y, z \in V,(x+y)+z=x+(y+z)$ (associativity of addition)
c) $\exists!0 \in V$, such that $x+0=x, \forall x \in V$
d) $\forall x \in V, \exists y \in V$ such that $x+y=0$
e) $\forall x \in V, 1 x=x$
f) $\forall a, b \in \mathcal{F}$ and $x \in V$, $(a b) x=a(b x)$
g) $\forall a \in \mathcal{F}$ and $x, y \in V, a(x+y)=a x+a y$
h) $\forall a, b \in \mathcal{F}$ and $x \in V,(a+b) x=a x+b x$.
2. The set of all $m \times n$ matrices with entries from a field \mathcal{F} is a vector space, which we denote by $\mathcal{M}_{m \times n}(\mathcal{F})$, with the following operations of matrix addition and scalar multiplication: For $A, B \in \mathcal{M}_{m \times n}(\mathcal{F})$ and $c \in \mathcal{F}$,
a) $(A+B)_{i j}=A_{i j}+B_{i j}$,
b) $(c A)_{i j}=c A_{i j}$, for $1 \leq i \leq m$ and $1 \leq j \leq n$.
3. A polynomial of degree n, or \mathbf{P}_{n}, with coefficients from a field \mathcal{F} is an expression of the form, $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$, where n is a nonnegative integer and each a_{k}, called the coefficient of x^{k}, is in \mathcal{F}.
4. A $W \subseteq V$, where V is a vector space over a field \mathcal{F} is called a subspace of V if W is a vector space over \mathcal{F} with the operations of addition and scalar multiplication defined on V, and if and only if the follow properties hold:
a) $x+y \in W$ whenever $x \in W$ and $y \in W$ (closed under addition)
b) $c x \in W$ whenever $c \in \mathcal{F}$ and $x \in W$ (closed under scalar multiplication)
c) W has a zero vector
d) Each vector in W has an additive inverse in W.
5. The transpose A^{T} of an $m \times n$ matrix A is the $n \times m$ matrix obtained by interchanging the rows with the columns, that is, $\left(A^{T}\right)_{i j}=A_{j i}$. A matrix is symmetric if and only if $A^{T}=A$.
6. The trace of an $n \times n$ matrix M is the sum of its diagonal entries, that is, $\operatorname{tr}(M)=M_{11}+M_{22}+\ldots+M_{n n}$.
7. A vector space V is called the direct sum of W_{1} and W_{2} if W_{1} and W_{2} are subspaces of V such that $W_{1} \cap W_{2}=\{0\}$ and $W_{1}+W_{2}=V$. We denote the direct sum by $V=W_{1} \oplus W_{2}$.

REFERENCE PAGES

LINEAR ALGEBRA

VECTOR SPACES

8. Let S be a nonempty subset of a vector space V. The span of S, denoted $\operatorname{span}(S)$, is the set consisting of all linear combinations of the vectors in S. Also, $\operatorname{span}(\varnothing)=\{0\}$.
9. A subset S of a vector space V generates (or spans) V if $\operatorname{span}(S)=V$.
10. A subset S of a vector space V is called linearly dependent if there exist a finite number of distinct vectors $u_{1}, u_{2}, \ldots, u_{n}$ in S and scalars $a_{1}, a_{2}, \ldots, a_{n}$, not all zero, such that $a_{1} u_{1}+a_{2} u_{2}+\cdots+a_{n} u_{n}=0$. A subset S of a vector space V that is not linearly dependent is called linearly independent.
11. A basis β for a vector space V is a linearly independent subset of V that generates V.
12. A vector space is called finite-dimensional if it has a basis consisting of a finite number of vectors. The unique number of vectors in each basis for V is called the dimension of V and is denoted $\operatorname{dim}(V)$. A vector space, not finite-dimensional, is called infinite-dimensional.
LINEAR TRANSFORMATIONS AND MATRICES
13. Let V and W be vector spaces (over \mathcal{F}). We call a function $T: V \rightarrow W$ a linear transformation from V to W, or simply linear, if for all $x, y \in V$ and $c \in \mathcal{F}$, we have,
a) $T(x+y)=T(x)+T(y)$,
b) $T(c x)=c T(x)$.
14. For any angle θ, define $T_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by the rule: $T_{\theta}\left(a_{1}, a_{2}\right)$ is the vector obtained by rotating $\left(a_{1}, a_{2}\right)$ counterclockwise by θ if $\left(a_{1}, a_{2}\right) \neq(0,0)$, and $T_{\theta}(0,0)=(0,0)$. Then $T_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation that is called the rotation by θ. Furthermore, $T_{\theta}\left(a_{1}, a_{2}\right)=\left(a_{1} \cos \theta-a_{2} \sin \theta, a_{1} \sin \theta+a_{2} \cos \theta\right)$.
15. Let V and W be vector spaces, and let $T: V \rightarrow W$ be linear. We define the null space (or kernal), $\mathcal{N}(T)$ of T to be the set of all vectors x in V such that $T(x)=0$, that is, $\mathcal{N}(T)=\{x \in V: T(x)=0\}$. We define the range (or image) $\mathcal{R}(T)$ of T to be the subset of W consisting of all images (under T) of vectors in V, that is, $\mathcal{R}(T)=\{T(x): x \in V\}$.
16. Let V and W be vector spaces, and let $T: V \rightarrow W$ be linear. If $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V, then $\mathcal{R}(T)=\operatorname{span}(T(\beta))=\operatorname{span}\left(\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{n}\right)\right\}\right)$.
17. Let V and W be vector spaces, and let $T: V \rightarrow W$ be linear. If $\mathcal{N}(T)$ and $\mathcal{R}(T)$ are finite-dimensional, then we define the nullity of T, denoted nullity (T), and the rank of T, denoted $\operatorname{rank}(T)$, to be the dimensions of $\mathcal{N}(T)$ and $\mathcal{R}(T)$, respectively.
18. Let V and W be vector spaces, and let $T: V \rightarrow W$ be linear. If V is finite-dimensional, then $\operatorname{nullity}(T)+\operatorname{rank}(T)=\operatorname{dim}(V)$.

REFERENCE PAGES

LINEAR ALGEBRA

LINEAR TRANSFORMATIONS AND MATRICES
19. For the vector space \mathcal{F}^{n}, we call $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ the standard ordered basis for \mathcal{F}^{n}. For the vector space $\mathbf{P}_{n}(\mathcal{F})$, we call $\left\{1, x, \ldots, x^{n}\right\}$ the standard ordered basis for $\mathbf{P}_{n}(\mathcal{F})$.
20. Let $\beta=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be an ordered basis for a finite-dimensional vector space V. For $x \in V$ let $a_{1}, a_{2}, \ldots, a_{n}$ be the unique scalars such that, $x=\sum_{i=1}^{n} a_{i} u_{i}$. We define the coordinate vector of x relative to β, denoted $[x]_{\beta}$, by $[x]_{\beta}=\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right)$.
21. Using the previous notation, we call the $m \times n$ matrix A defined by $A_{i j}=a_{i j}$ the matrix representation of T in the ordered bases β and γ and write $A=[T]_{\beta}^{\gamma}$. If $V=W$ and $\beta=\gamma$, then we write $A=[T]_{\beta}$.
22. Let $T, U: V \rightarrow W$ be arbitrary functions, where V and W are vector spaces over \mathcal{F}, and let $a \in \mathcal{F}$. We define $T+U: V \rightarrow W$ by $(T+U)(x)=T(x)+U(x), \forall x \in V$, and $a T: V \rightarrow W$ by $(a T)(x)=a T(x), \forall x \in V$.
23. Let V and W be vector spaces over \mathcal{F}. We denote the vector space of all linear transformations from V into W by $\mathcal{L}(V, W)$.
24. Let $A \in \mathcal{M}_{m \times n}(\mathcal{F}), B \in \mathcal{M}_{n \times p}(\mathcal{F})$, then the matrix multiplication given by $A B \in \mathcal{M}_{m \times p}(\mathcal{F})$ where $(A B)_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}$, for $1 \leq i \leq m, 1 \leq j \leq p$. Example: $\left[\begin{array}{cccc}\cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ 1 & 2 & 3 & 4\end{array}\right]\left[\begin{array}{llll}\cdot & \cdot & \cdot & a \\ \cdot & \cdot & \cdot & b \\ \cdot & \cdot & \cdot & c \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & d\end{array}\right]=\left[\begin{array}{cccc}\cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ x_{3,4} & \cdot\end{array}\right]$ $x_{3,4}=(1,2,3,4) \cdot(a, b, c, d)=1 \times a+2 \times b+3 \times c+4 \times d$.
25. We define the Kronecker delta $\delta_{i j}$, by $\delta_{i j}=1$ if $i=j$ and $\delta_{i j}=0$ if $i \neq j$. Thus, the $n \times n$ identity matrix I_{n} is defined by $\left(I_{n}\right)_{i j}=\delta_{i j}$.
26. Let $A \in \mathcal{M}_{m \times n}(\mathcal{F})$, we denote by L_{A} the mapping $L_{A}: \mathcal{F}^{n} \rightarrow \mathcal{F}^{m}$ defined by $L_{A}(x)=A x$, for each column vector $x \in \mathcal{F}^{n}$. We call L_{A} the left-multiplication transformation.
27. Let V and W be vector spaces, and let $T: V \rightarrow W$ be linear. A function $U: W \rightarrow V$ is said to be an inverse of T if $T U=I_{W}$ and $U T=I_{V}$. If T has an inverse, then T is said to be invertible. If T is invertible, then the inverse of T is unique, and is denoted T^{-1}.
28. Let A be an $n \times n$ matrix. A is invertible if \exists an $n \times n$ matrix B such that $A B=B A=I$.

REFERENCE PAGES

LINEAR ALGEBRA

LINEAR TRANSFORMATIONS AND MATRICES
29. Let V and W be vector spaces. We say that V is isomorphic to W if there exists a linear transformation $T: V \rightarrow W$ that is invertible. Such a linear transformation is called an isomorphism from V to W.
30. Let β be an ordered basis for an n-dimensional vector space V over the field \mathcal{F}. The standard representation of V with respect to β is the function $\phi_{\beta}: V \rightarrow \mathcal{F}^{n}$ defined by $\phi_{\beta}(x)=[x]_{\beta}, \forall x \in V$.
31. Let V and W be vector spaces of dimension n and m, respectively, and let $T: V \rightarrow W$ be a linear transformation. Define $A=[T]_{\beta}^{\gamma}$, where β and γ are arbitrary ordered bases of V and W, respectively. We now use ϕ_{β} and ϕ_{γ} to form a relationship with the linear transformation T and $L_{A}: \mathcal{F}^{n} \rightarrow \mathcal{F}^{m}$. Consider this figure:

```
\(\begin{array}{cll}V & \xrightarrow{T} & W \\ \phi_{\beta} \downarrow & & \downarrow_{\phi_{\gamma}}\end{array}\)
\(\mathcal{F}^{n} \quad \overrightarrow{L_{A}} \quad \mathcal{F}^{m}\), where we can conclude that \(L_{A} \phi_{\beta}=\phi_{\gamma} T\).
```

32. Let β and β^{\prime} be two ordered bases for a finite-dimensional vector space V, and let $Q=\left[I_{V}\right]_{\beta^{\prime}}^{\beta}$, then,
a) Q is invertible,
b) for any $v \in V,[v]_{\beta}=Q[v]_{\beta^{\prime}}$.
33. The matrix $Q=\left[I_{V}\right]_{\beta^{\prime}}^{\beta}$ above is called a change of coordinate matrix. We say that Q changes β^{\prime}-coordinates into β-coordinates. Observe that if $\beta=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $\beta^{\prime}=\left\{x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right\}$, then $x_{j}^{\prime}=\sum_{i=1}^{n} Q_{i j} x_{i}, j=1,2, \ldots, n$ that is, the j th column of Q is $\left[x_{j}^{\prime}\right]_{\beta}$.
34. Let T be a linear operator on a finite-dimensional vector space V, and let β and β^{\prime} be ordered bases for V. Suppose that Q is the change of coordinate matrix that changes β^{\prime}-coordinates into β-coordinates, then $[T]_{\beta^{\prime}}=Q^{-1}[T]_{\beta} Q$.
35. Let A and B be matrices in $\mathcal{M}_{m \times n}(\mathcal{F})$. We say that B is similar to A if there exists an invertible matrix Q such that $B=Q^{-1} A Q$.
36. Let V be the vector space of continuous real-valued functions on the interval $[0,2 \pi]$. Fix a function $g \in V$. The function $h: V \rightarrow \mathbb{R}$ defined by $h(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} x(t) g(t) d t$ is a linear functional on V. In the cases that $g(t)$ equals $\sin n t$ or $\cos n t, h(x)$ is often called the nth Fourier coefficient of x.

REFERENCE PAGES

LINEAR ALGEBRA

ELEMENTARY MATRIX OPERATIONS AND SYSTEMS OF LINEAR EQUATIONS
37. Let $A \in \mathcal{M}_{m \times n}(\mathcal{F})$. Any one of the following three operations on the rows [columns] of A is called an elementary row [column] operation:
a) interchanging any two rows [columns] of A,
b) multiplying any row [column] of A by a nonzero scalar,
c) adding any scalar multiple of a row [column] of A to another row [column].
38. An elementary matrix is a matrix obtained by performing an elementary operation on I_{n}.
39. If $A \in \mathcal{M}_{m \times n}(\mathcal{F})$, we define the rank of A, denoted $\operatorname{rank}(A)$, to be the rank of the linear transformation $L_{A}: \mathcal{F}^{n} \rightarrow \mathcal{F}^{m}$.
40. Elementary operations preserve the rank of a matrix.
41. A system $A x=b$ of m linear equations in n unknowns is said to be homogenous if $b=0$. Otherwise the system is said to be nonhomogenous.
42. Let K be the solution set of a system of linear equations $A x=b$, and let K_{H} be the solution set of the corresponding homogenous system $A x=0$. Then for any solution s to $A x=b$, $K=\{s\}+K_{\mathrm{H}}=\left\{s+k: k \in K_{\mathrm{H}}\right\}$.
43. Two systems of linear equations are called equivalent if they have the same solution set.
44. A matrix is said to be in reduced row echelon form if the following are satisfied:
a) Any row containing a nonzero entry precedes any row in which all the entries are zero (if any).
b) The first nonzero entry in each row is the only nonzero entry in its column.
c) The first nonzero entry in each row is 1 and it occurs in a column to the right of the first nonzero entry in the preceding row.
45. Gaussian [Gauss-Jordan] Elimination: Elementary row operations are used to reduce a matrix to row [reduced-row] echelon form in order to find a solution set to the system of linear equations.
DETERMINANTS
46. If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a 2×2 matrix with entries from a field \mathcal{F}, then we define the determinant of A, denoted $\operatorname{det}(A)$ or $|A|$, to be the scalar $a d-b c$.
47. Let $A \in \mathcal{M}_{2 \times 2}(\mathcal{F})$. Then the determinant of A is nonzero if and only if A is invertible.

Moreover, if A is invertible, then $A^{-1}=\frac{1}{\operatorname{det}(A)}\left(\begin{array}{cc}A_{22} & -A_{12} \\ -A_{21} & A_{11}\end{array}\right)$.
48. Let $A \in \mathcal{M}_{n \times n}(\mathcal{F})$. If $n=1$, so that $A=\left(A_{11}\right)$, we define $\operatorname{det}(A)=A_{11}$. For $n \geq 2$, we define $\operatorname{det}(A)$ recursively as, $\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{1+j} A_{1 j} \cdot \operatorname{det}\left(\tilde{A}_{1 j}\right)$. The scalar, $(-1)^{i+j} \operatorname{det}\left(\tilde{A}_{i j}\right)$ is called the cofactor of the entry of A in row i, column j.

REFERENCE PAGES

LINEAR ALGEBRA

DETERMINANTS

49. If $A \in \mathcal{M}_{n \times n}(\mathcal{F})$ has a row consisting entirely of zeros, then $\operatorname{det}(A)=0$.
50. The determinant of a square matrix A can be evaluated along any row, such that $\operatorname{det}(A)=\sum_{j=1}^{n}(-1)^{i+j} A_{i j} \cdot \operatorname{det}\left(\tilde{A}_{i j}\right)$, for any integer $1 \leq i \leq n$.
51. If $A \in \mathcal{M}_{n \times n}(\mathcal{F})$ and B is a matrix obtained from A by interchanging any two rows of A, then $\operatorname{det}(B)=-\operatorname{det}(A)$.
52. If $A \in \mathcal{M}_{n \times n}(\mathcal{F})$ and B is a matrix obtained from A by adding a multiple of one row of A to another row of A, then $\operatorname{det}(B)=\operatorname{det}(A)$.
53. If $A \in \mathcal{M}_{n \times n}(\mathcal{F})$ and B is a matrix obtained from A by multiplying one row of A by some nonzero scalar $k \in \mathcal{F}$, then $\operatorname{det}(B)=k \operatorname{det}(A)$.
54. If $A \in \mathcal{M}_{n \times n}(\mathcal{F})$ has rank less than n, then $\operatorname{det}(A)=0$.
55. The determinant of an upper triangular matrix is the product of its diagonal entries.
56. A matrix $A \in \mathcal{M}_{n \times n}(\mathcal{F})$ is invertible if and only if $\operatorname{det}(A) \neq 0$. Also, $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.
57. For any $A \in \mathcal{M}_{n \times n}(\mathcal{F}), \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.
58. Let $A x=b$ be the matrix form of a system of n linear equations in n unknowns, where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$. If $\operatorname{det}(A) \neq 0$, then this system has a unique solution, and for each $k=(1,2, \ldots, n), x_{k}=\frac{\operatorname{det}\left(M_{k}\right)}{\operatorname{det}(A)}$, where M_{k} is the $n \times n$ matrix obtained from A by replacing column k of A by b.
59. A function $\delta: \mathcal{M}_{n \times n}(\mathcal{F}) \rightarrow \mathcal{F}$ is called an n-linear function if it a linear function of each row of an $n \times n$ matrix when the remaining $n-1$ rows are held fixed, that is, δ is n-linear if, for every $r=1,2, \ldots, n$, we have $\delta\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{r-1} \\ u+k v \\ a_{r+1} \\ \vdots \\ a_{n}\end{array}\right)=\delta\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{r-1} \\ u \\ a_{r+1} \\ \vdots \\ a_{n}\end{array}\right)+k \delta\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{r-1} \\ v \\ a_{r+1} \\ \vdots \\ a_{n}\end{array}\right)$ whenever k is a scalar and u, v, and each a_{i} are vectors in \mathcal{F}^{n}.

REFERENCE PAGES

LINEAR ALGEBRA

DIAGONALIZATION

60. A linear operator T on a finite-dimensional vector space V is called diagonalizable if there is an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix.
61. Let T be a linear operator on a vector space V. A nonzero vector $v \in V$ is called an eigenvector of T if there exists a scalar λ such that $T(v)=\lambda v$. The scalar λ is called the eigenvalue corresponding to the eigenvector v.
62. Let $A \in \mathcal{M}_{n \times n}(\mathcal{F})$. The polynomial $f(t)=\operatorname{det}\left(A-t I_{n}\right)$ is called the characteristic polynomial of A. To find the eigenvalue(s) of a matrix, we compute $\operatorname{det}\left(A-t I_{n}\right)$.
63. Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. A vector $v \in V$ is an eigenvector of T corresponding to λ if and only if $v \neq 0$ and $v \in \mathcal{N}(T-\lambda I)$.
64. A polynomial $f(t)$ in $\mathbf{P}(\mathcal{F})$ splits over \mathcal{F} if there are scalars c, a_{1}, \ldots, a_{n} (not necessarily distinct) in \mathcal{F} such that $f(t)=c\left(t-a_{1}\right)\left(t-a_{2}\right) \ldots\left(t-a_{n}\right)$.
65. Let λ be an eigenvalue of a linear operator or matrix with characteristic polynomial $f(t)$. The (algebraic) multiplicity of λ is the largest positive integer k for which $(t-\lambda)^{k}$ is a factor of $f(t)$.
66. Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. Define $E_{\lambda}=\{x \in V: T(x)=\lambda x\}=\mathcal{N}\left(T-\lambda I_{V}\right)$. The set E_{λ} is called the eigenspace of T corresponding to the eigenvalue λ.
67. Let T be a linear operator on an n-dimensional vector space V. Then T is diagonalizable if and only if both of the following conditions hold:
a) The characteristic polynomial of T splits.
b) For each eigenvalue λ of T, the multiplicity of λ equals $n-\operatorname{rank}(T-\lambda I)$.

INNER PRODUCT SPACES

68. Let V be a vector space over \mathcal{F}. An inner product on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar \mathcal{F}, denoted $\langle x, y\rangle$, such that $\forall x, y, z \in V$ and all $c \in \mathcal{F}$, the following hold:
a) $\langle x+z, y\rangle=\langle x, y\rangle+\langle z, y\rangle$
b) $\langle c x, y\rangle=c\langle x, y\rangle$
c) $\overline{\langle x, y\rangle}=\langle y, x\rangle$, where the over-bar denotes complex conjugation
d) $\langle x, x\rangle>0$, if $x \neq 0$
69. Let $A \in \mathcal{M}_{m \times n}(\mathcal{F})$. We define the conjugate transpose or adjoint of A to be the $n \times m$ matrix A^{*} such that $\left(A^{*}\right)_{i j}=\overline{A_{j i}}$, for all i, j.

REFERENCE PAGES

LINEAR ALGEBRA

INNER PRODUCT SPACES

70. Let V be an inner product space. For $x \in V$, we define the norm or length of x by $\|x\|=\sqrt{\langle x, x\rangle}$.
71. Let V be an inner product space. Vectors $x, y \in V$ are orthogonal (perpendicular) if $\langle x, y\rangle=0$. A subset S of V is orthogonal if any two distinct vectors in S are orthogonal. A vector $x \in V$ is a unit vector if $\|x\|=1$. Finally, a subset S of V is orthonormal if S is orthogonal and consists entirely of unit vectors.
72. The process of multiplying a nonzero vector by the reciprocal of its length, or norm, is called normalizing.
73. Let V be an inner product space. A subset of V is an orthonormal basis for V if it an ordered basis that is orthonormal.
74. The Gram-Schmidt Process: Let V be an inner product space and $S=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ be a linearly independent subset of V. Define $S^{\prime}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, where $v_{1}=w_{1}$, and $v_{k}=w_{k}-\sum_{j=1}^{k-1} \frac{\left\langle w_{k}, v_{j}\right\rangle}{\left\|v_{j}\right\|^{2}} v_{j}$, for $2 \leq k \leq n$. Then S^{\prime} is an orthogonal set of nonzero vectors such that $\operatorname{span}\left(S^{\prime}\right)=\operatorname{span}(S)$.
75. Let β be an orthonormal subset (possibly infinite) of an inner product space V, and let $x \in V$. The Fourier coefficients of x relative to β are the scalars $\langle x, y\rangle$, where $y \in \beta$.
76. Let S be a nonempty subset of an inner product space V. We define S^{\perp}, or " S perp", to be the set of all vectors in V that are orthogonal to every vector in S; that is, $S^{\perp}=\{x \in V:\langle x, y\rangle=0$ for all $y \in S\}$. The set S^{\perp} is called the orthogonal complement of S.
77. Let V be an inner product space, and let T be a linear operator on V. We say that T is normal if $T T^{*}=T^{*} T$.
78. Let T be a linear operator on an inner product space V. We say that T is self-adjoint (Hermitian) if $T=T^{*}$.
79. Let T be a linear operator on a finite-dimensional inner product space V over \mathcal{F}. If $\|T(x)\|=\|x\|$ for all $x \in V$, we call T a unitary operator if $\mathcal{F}=\mathbb{C}$ and an orthogonal operator if $\mathcal{F}=\mathbb{R}$. In the infinite-dimensional case, it is generally called an isometry.
80. A square matrix A is called an orthogonal matrix if $A^{T} A=A A^{T}=I$ and unitary if $A^{*} A=A A^{*}=I$.
81. Let V be a real inner product space. A function $f: V \rightarrow V$ is called a rigid motion if $\|f(x)-f(y)\|=\|x-y\|$ for all $x, y \in V$.

REFERENCE PAGES

LINEAR ALGEBRA

INNER PRODUCT SPACES
82. Let V be an inner product space, and let $T: V \rightarrow V$ be a projection. We say that T is an orthogonal projection if $\mathcal{R}(T)^{\perp}=\mathcal{N}(T)$ and $\mathcal{N}(T)^{\perp}=\mathcal{R}(T)$.
83. The Spectral Theorem: Suppose that T is a linear operator on a finite-dimensional inner product space V over \mathcal{F} with the distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$. Assume that T is normal if $\mathcal{F}=\mathbb{C}$ and that T is self-adjoint if $\mathcal{F}=\mathbb{R}$. For each $i, 1 \leq i \leq k$, let W_{i} be the eigenspace of T corresponding to the eigenvalue λ_{i}, and let T_{i} be the orthogonal projection of V on W_{i}. Then the following statements are true:
a) $V=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{k}$,
b) If $W_{i}{ }^{\prime}$ denotes the direct sum of the subspaces W_{j} for $j \neq i$, then $W_{i}^{\perp}=W_{i}{ }^{\prime}$,
c) $T_{i} T_{j}=\delta_{i j} T_{i}$, for $1 \leq i, j \leq k$,
d) $I=T_{1}+T_{2}+\cdots+T_{k}$,
e) $T=\lambda_{1} T_{1}+\lambda_{2} T_{2}+\cdots+\lambda_{k} T_{k}$.
84. The set $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right\}$ of eigenvalues of T is called the spectrum of T.
85. The sum $I=T_{1}+T_{2}+\cdots+T_{k}$ from 83. (d) is called the resolution of the identity operator induced by T.
86. The sum $T=\lambda_{1} T_{1}+\lambda_{2} T_{2}+\cdots+\lambda_{k} T_{k}$ from 83. (e) is called the spectral decomposition of T.

CANONICAL FORMS
87. Let T be a linear operator on a vector space V and let λ be a scalar. A nonzero vector x in V is called a generalized eigenvector of T corresponding to λ if $(T-\lambda I)^{p}(x)=0$, for some positive integer p.
88. Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. The generalized eigenspace of T corresponding to λ, denoted, K_{λ}, is the subset of V defined by $K_{\lambda}=\left\{x \in V:(T-\lambda I)^{p}(x)=0\right.$, for some positive integer $\left.p\right\}$.
89. Let T be a linear operator on a vector space V, and let x be a generalized eigenvector of T corresponding to the eigenvalue λ. Suppose that p is the smallest positive integer for which $(T-\lambda I)^{p}(x)=0$. Then the ordered set $\left\{(T-\lambda I)^{p-1}(x),(T-\lambda I)^{p-2}(x), \ldots,(T-\lambda I)(x), x\right\}$ is called a cycle of generalized eigenvectors of T corresponding to λ. The vectors $(T-\lambda I)^{p-1}(x)$ and x are called the initial vector and the end vector of the cycle, respectively. We say that the length of the cycle is p.

REFERENCE PAGES

LINEAR ALGEBRA

CANONICAL FORMS
90. Let T be a linear operator on a finite-dimensional vector space V, and suppose the characteristic polynomial of T splits, and let β be the union of ordered bases of generalized eigenspaces of V, such that $[T]_{\beta}=\left(\begin{array}{cccc}A_{1} & O & \cdots & O \\ O & A_{2} & \cdots & O \\ \vdots & \vdots & & \vdots \\ O & O & \cdots & A_{k}\end{array}\right)$, where each O is a zero matrix, and each A_{i} is a square matrix of the form (λ) or $\left(\begin{array}{cccccc}\lambda & 1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & 1 \\ 0 & 0 & 0 & \cdots & 0 & \lambda\end{array}\right)$ for some eigenvalue λ of T. Such a matrix A_{i} is called a Jordan block corresponding to λ, and the matrix $[T]_{\beta}$ is called a Jordan canonical form of T. We also say that the ordered basis β is a Jordan canonical basis for T.
91. Let $A \in \mathcal{M}_{n \times n}(\mathcal{F})$ be such that the characteristic polynomial of A (and hence L_{A}) splits. Then the Jordan canonical form of A is defined to be the Jordan canonical form of the linear operator L_{A} on \mathcal{F}^{n}. Example:
Let $A=\left(\begin{array}{ccc}3 & 1 & -2 \\ -1 & 0 & 5 \\ -1 & -1 & 4\end{array}\right) \in \mathcal{M}_{3 \times 3}(\mathbb{R})$, to find the Jordan canonical form for A, we need to find a Jordan canonical basis for $T=L_{A}$. The characteristic polynomial of A is $f(t)=\operatorname{det}(A-t I)=-(t-3)(t-2)^{2}$. Hence $\lambda_{1}=3$ and $\lambda_{2}=2$ are eigenvalues of A with multiplicities 1 and 2 , respectively. Then $\operatorname{dim}\left(K_{\lambda_{1}}\right)=1$, and $\operatorname{dim}\left(K_{\lambda_{2}}\right)=2$. Then $K_{\lambda_{1}}=\mathcal{N}(T-3 I)$, and $K_{\lambda_{2}}=\mathcal{N}\left((T-2 I)^{2}\right)$. Since $E_{\lambda_{1}}=\mathcal{N}(T-3 I)$, we have $E_{\lambda_{1}}=K_{\lambda_{1}}$. Observe that $(-1,2,1)$ is an eigenvector of T corresponding to $\lambda_{1}=3$; therefore $\beta_{1}=\left\{\left(\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right)\right\}$ is a basis for $K_{\lambda_{1}}$. Since $\operatorname{dim}\left(K_{\lambda_{2}}\right)=2$ and a generalized eigenspace has a basis consisting of a union of cycles, this basis is either a union of two cycles of length 1 , or a single cycle of length 2 . Continued on next page...

REFERENCE PAGES

LINEAR ALGEBRA

CANONICAL FORMS
91. ...Continued. The former case (union of two cycles of length 1) is impossible because the vectors in the basis would be eigenvectors-contradicting the face that $\operatorname{dim}\left(E_{\lambda_{2}}\right)=1$.
Therefore the desired basis is a single cycle of length 2. A vector v is the end vector of such a cycle if and only if $(A-2 I) v \neq 0$, but $(A-2 I)^{2} v=0$. Then $\left\{\left(\begin{array}{c}1 \\ -3 \\ -1\end{array}\right),\left(\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right)\right\}$ is a basis for the solution space of the homogenous system $(A-2 I)^{2} x=0$. Now choose a vector v in this set so that $(A-2 I) v \neq 0$. The vector $v=(-1,2,0)$ is an acceptable candidate. Since $(A-2 I) v=(1,-3,-1)$, we obtain the cycle of generalized eigenvectors $\beta_{2}=\{(A-2 I) v, v\}=\left\{\left(\begin{array}{c}1 \\ -3 \\ -1\end{array}\right),\left(\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right)\right\}$ as a basis for $K_{\lambda_{2}}$. Finally, we can take the union of these two bases to obtain $\beta=\beta_{1} \cup \beta_{2}=\left\{\left(\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -3 \\ -1\end{array}\right),\left(\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right)\right\}$, which is a Jordan canonical basis for A. Therefore, $J=[T]_{\beta}=\left(\begin{array}{ccc}3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right)$ is a Jordan canonical form for A. Notice that A is similar to J; in fact, $J=Q^{-1} A Q$, where Q is the matrix whose columns are the vectors in β.
92. Each generalized eigenspace $K_{\lambda_{i}}$ contains an ordered basis β_{i} consisting of a union of disjoint cycles of generalized eigenvectors corresponding to λ_{i}. So the union $\beta=\bigcup_{i=1}^{k} \beta_{i}$ is a Jordan canonical basis for T. For each i, let T_{i} be the restriction of T to $K_{\lambda_{i}}$, and let $A_{i}=\left[T_{i}\right]_{\beta_{i}}$. Then A_{i} is the Jordan canonical form of T_{i}, and $J=[T]_{\beta}=\left(\begin{array}{cccc}A_{1} & O & \cdots & O \\ O & A_{2} & \cdots & O \\ \vdots & \vdots & & \vdots \\ O & O & \cdots & A_{k}\end{array}\right)$ is the Jordan canonical form of T.

REFERENCE PAGES

LINEAR ALGEBRA

CANONICAL FORMS
93. To help visualize each of the matrices A_{i} in a Jordan canonical form, and ordered bases β_{i}, we use an array of dots called a dot diagram of T_{i}, where T_{i} is the restriction of T to $K_{\lambda_{i}}$. Suppose that β_{i} is a disjoint union of cycles of generalized eigenvectors $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n_{i}}$ with lengths $p_{1} \geq p_{2} \geq \cdots \geq p_{n_{i}}$, respectively. The dot diagram of T_{i} contains one dot for each vector in β_{i}, and the dots are configured according to the following rules:
a) The array consists of n_{i} columns (one column for each cycle).
b) Counting from left to right, the j th column consists of the p_{j} dots that correspond to the vectors of γ_{j} starting with the initial vector at the top and continuing down to the end vector.
Denote the end vectors of the cycles by $v_{1}, v_{2}, \ldots, v_{n_{i}}$. Example:

$\bullet\left(T-\lambda_{i} I\right)^{p_{1}-1}\left(v_{1}\right) \bullet\left(T-\lambda_{i} I\right)^{p_{1}-1}\left(v_{2}\right)$	\cdots	$\bullet\left(T-\lambda_{i} I\right)^{p_{n_{i}}-1}\left(v_{n_{i}}\right)$
$\bullet\left(T-\lambda_{i} I\right)^{p_{1}-2}\left(v_{1}\right) \bullet\left(T-\lambda_{i} I\right)^{p_{1}-2}\left(v_{2}\right)$	$\bullet\left(T-\lambda_{i} I\right)^{p_{n_{i}}-2}\left(v_{n_{i}}\right)$	
\vdots	\vdots	\vdots
\vdots	\vdots	$\bullet\left(T-\lambda_{i} I\right)\left(v_{n_{i}}\right)$
\vdots	$\bullet\left(T-\lambda_{i} I\right)\left(v_{2}\right)$	$\bullet v_{n_{i}}$
$\bullet\left(T-\lambda_{i} I\right)\left(v_{1}\right)$	$\bullet v_{2}$	
$\bullet v_{1}$		

94. A linear operator T on a vector space $V,[n \times n$ matrix $A]$, is called nilpotent if $T^{p}=T_{0}$, [$A^{p}=O$], for come positive integer p.
95. Let T be a linear operator on a finite-dimensional vector space. A polynomial $p(t)$ is called the minimal polynomial of T if $p(t)$ is a monic (leading coefficient is 1) polynomial of least positive degree for which $p(T)=T_{0}$. It follows for $A \in \mathcal{M}_{n \times n}(\mathcal{F})$, if $p(t)$ is a monic polynomial of least positive degree for which $p(A)=O$.
