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L I N E A R   A L G E B R A 
VECTOR SPACES 
1. A vector space V  over a field  F  consists of a set on which two operations (addition and 

scalar multiplication, respectively) are defined so that ! x, y "V ,  #! x + y "V , and 

 ! a "F  and x "V ,  #! ax "V , such that the following conditions hold: 
  a) ! x, y "V ,  x + y = y + x (commutativity of addition)  
  b) ! x, y, z "V ,  (x + y) + z = x + (y + z) (associativity of addition)  
  c) !! 0 "V ,  such that x + 0 = x,  # x "V  
  d) ! x "V ,  # y "V  such that x + y = 0  
  e) ! x "V ,  1x = x  
  f)  ! a,b "F  and x "V ,  (ab)x = a(bx)  
  g)  ! a "F  and x, y "V ,  a(x + y) = ax + ay  
  h)  ! a,b "F  and x "V ,  (a + b)x = ax + bx . 
2. The set of all m ! n  matrices with entries from a field  F  is a vector space, which we denote 

by 
 
M

m!n
F( ) , with the following operations of matrix addition and scalar multiplication: 

For 
 
A,B !M

m"n
F( )  and  c !F , 

  a) A + B( )
ij
= Aij + Bij , 

  b) cA( )
ij
= cAij , for 1 ! i ! m  and 1 ! j ! n . 

3. A polynomial of degree n , or P
n

, with coefficients from a field  F  is an expression of the 
form, 

 
f x( ) = anx

n
+ an!1x

n!1
+!+ a

1
x + a

0
, where n  is a nonnegative integer and each a

k
, 

called the coefficient of xk , is in  F . 
4. A W ! V , where V  is a vector space over a field  F  is called a subspace of V  if W is a 

vector space over  F  with the operations of addition and scalar multiplication defined on V , 
and if and only if the follow properties hold: 

  a) x + y !W  whenever x !W  and y !W  (closed under addition)  
  b)  cx !W  whenever c !F  and x !W  (closed under scalar multiplication)  
  c) W  has a zero vector  
  d) Each vector in W  has an additive inverse in W . 
5. The transpose AT  of an m ! n  matrix A  is the n ! m  matrix obtained by interchanging the 

rows with the columns, that is, AT( )
ij
= Aji

. A matrix is symmetric if and only if AT
= A . 

6. The trace of an n ! n  matrix M  is the sum of its diagonal entries, that is, 
tr(M ) = M

11
+ M

22
+ ...+ M

nn
. 

7. A vector space V  is called the direct sum of W
1
 and W

2
 if W

1
 and W

2
 are subspaces of V  

such that W
1
!W

2
= {0} and W

1
+W

2
= V . We denote the direct sum by V =W

1
!W

2
. 
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8. Let S  be a nonempty subset of a vector space V . The span of S , denoted span S( ) , is the set 

consisting of all linear combinations of the vectors in S . Also, span !( ) = 0{ } . 
9. A subset S  of a vector space V  generates (or spans) V  if span S( ) = V . 
10. A subset S  of a vector space V  is called linearly dependent if there exist a finite number of 

distinct vectors 
 
u
1
,u

2
,…,u

n
 in S  and scalars 

 
a
1
,a

2
,…,a

n
, not all zero, such that 

 
a
1
u
1
+ a

2
u
2
+!+ a

n
u
n
= 0 . A subset S  of a vector space V  that is not linearly dependent is 

called linearly independent. 
11. A basis !  for a vector space V  is a linearly independent subset of V  that generates V . 
12. A vector space is called finite-dimensional if it has a basis consisting of a finite number of 

vectors. The unique number of vectors in each basis for V  is called the dimension of V  and 
is denoted dim V( ) . A vector space, not finite-dimensional, is called infinite-dimensional. 

LINEAR TRANSFORMATIONS AND MATRICES 
13. Let V  and W  be vector spaces (over  F ). We call a function T :V !W  a linear 

transformation from V  to W , or simply linear, if for all x, y !V  and  c !F , we have, 
  a) T x + y( ) = T x( ) + T y( ) , 
  b) T cx( ) = cT x( ) . 
14. For any angle ! , define 

 
T
!
:!

2
" !

2  by the rule: T
!
a
1
,a

2( )  is the vector obtained by 
rotating a

1
,a

2( )  counterclockwise by !  if a
1
,a

2( ) ! 0,0( ) , and T
!
0,0( ) = 0,0( ) . Then 

 
T
!
:!

2
" !

2  is a linear transformation that is called the rotation by ! . Furthermore, 
T
!
a
1
,a

2( ) = a
1
cos! " a

2
sin!,a

1
sin! + a

2
cos!( ) . 

15. Let V  and W  be vector spaces, and let T :V !W  be linear. We define the null space (or 
kernal), 

 
N T( )  of T  to be the set of all vectors x  in V  such that T x( ) = 0 , that is, 

 
N T( ) = x !V :T x( ) = 0{ } . We define the range (or image) 

 
R T( )  of T  to be the subset 

of W  consisting of all images (under T ) of vectors in V , that is, 
 
R T( ) = T x( ) : x !V{ } . 

16. Let V  and W  be vector spaces, and let T :V !W  be linear. If ! = v
1
,v
2
,...,v

n{ }  is a basis 

for V , then 
 
R T( ) = span T !( )( ) = span T v1( ),T v2( ),...,T v

n( ){ }( ) . 

17. Let V  and W  be vector spaces, and let T :V !W  be linear. If 
 
N T( )  and 

 
R T( )  are 

finite-dimensional, then we define the nullity of T , denoted nullity T( ) , and the rank of T , 
denoted rank T( ) , to be the dimensions of 

 
N T( )  and 

 
R T( ) , respectively. 

18. Let V  and W  be vector spaces, and let T :V !W  be linear. If V  is finite-dimensional, then 
nullity T( ) + rank T( ) = dim V( ) . 
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19. For the vector space  F

n , we call e
1
,e
2
,...,e

n{ }  the standard ordered basis for  F
n . For the 

vector space 
 
P
n

F( ) , we call 1, x,..., xn{ }  the standard ordered basis for 
 
P
n

F( ) . 

20. Let ! = u
1
,u

2
,...,u

n{ }  be an ordered basis for a finite-dimensional vector space V . For x !V  

let a
1
,a

2
,...,a

n
 be the unique scalars such that, x = a

i
u
i

i=1

n

! . We define the coordinate vector 

of x  relative to ! , denoted x[ ]! , by 

 

x[ ]! =

a
1

!

a
n

"

#

$
$

%

&

'
'

. 

21. Using the previous notation, we call the m ! n  matrix A  defined by Aij = aij  the matrix 

representation of T  in the ordered bases !  and !  and write A = T[ ]!
" . If V =W  and 

! = " , then we write A = T[ ]! . 
22. Let T ,U :V !W  be arbitrary functions, where V  and W  are vector spaces over  F , and let 

 a !F . We define T +U :V !W  by T +U( ) x( ) = T x( ) +U x( ),  !x "V , and aT :V !W  
by aT( ) x( ) = aT x( ),  !x "V . 

23. Let V  and W  be vector spaces over  F . We denote the vector space of all linear 
transformations from V  into W  by 

 
L V ,W( ) . 

24. Let 
 
A !Mm"n F( ),  B !Mn" p F( ) , then the matrix multiplication given by 

 
AB !Mm" p F( )  where AB( )

ij
= AikBkj

k=1

n

! , for 1 ! i ! m,  1 ! j ! p . Example: 

 
 

25. We define the Kronecker delta ! ij , by ! ij = 1  if i = j  and ! ij = 0  if i ! j . Thus, the n ! n  

identity matrix 
 
I
n

 is defined by 
 
I
n( )

ij
= !

ij
. 

26. Let 
 
A !M

m"n
F( ) , we denote by L

A
 the mapping  LA :F

n
! F m  defined by L

A
x( ) = Ax , 

for each column vector  x !F n . We call L
A

 the left-multiplication transformation. 
27. Let V  and W  be vector spaces, and let T :V !W  be linear. A function U :W !V  is said 

to be an inverse of T  if 
 
TU = I

W
 and 

 
UT = I

V
. If T  has an inverse, then T  is said to be 

invertible. If T  is invertible, then the inverse of T  is unique, and is denoted T !1 . 
28. Let A  be an n ! n  matrix. A  is invertible if !  an n ! n  matrix B  such that  AB = BA = I . 
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29. Let V  and W  be vector spaces. We say that V  is isomorphic to W  if there exists a linear 

transformation T :V !W  that is invertible. Such a linear transformation is called an 
isomorphism from V  to W . 

30. Let !  be an ordered basis for an n -dimensional vector space V  over the field  F . The 
standard representation of V  with respect to !  is the function 

 
!" :V # F n  defined by 

!" x( ) = x[ ]" ,  #x $V . 
31. Let V  and W  be vector spaces of dimension n  and m , respectively, and let T :V !W  be a 

linear transformation. Define A = T[ ]!
" , where !  and !  are arbitrary ordered bases of V  

and W , respectively. We now use !"  and !"  to form a relationship with the linear 

transformation T  and  LA :F
n
! F m . Consider this figure: 

  
 

V !
T

W

"
#
$ $ "

%

F n !
LA

F m , where we can conclude that L
A
!" = !#T . 

32. Let !  and ! '  be two ordered bases for a finite-dimensional vector space V , and let 

 
Q = I

V[ ]
! '

! , then, 

  a) Q  is invertible, 
  b) for any v !V ,  v[ ]" = Q v[ ]" '

. 

33. The matrix 
 
Q = I

V[ ]
! '

!  above is called a change of coordinate matrix. We say that Q  

changes ! ' -coordinates into ! -coordinates. Observe that if ! = x
1
, x

2
,..., x

n{ }  and 

! ' = x '
1
, x '

2
,..., x '

n{ } , then x ' j = Qijxi
i=1

n

! ,  j = 1,2,...,n  that is, the j th column of Q  is x '
j

!" #$% . 

34. Let T  be a linear operator on a finite-dimensional vector space V , and let !  and ! '  be 
ordered bases for V . Suppose that Q  is the change of coordinate matrix that changes        
! ' -coordinates into ! -coordinates, then T[ ]! ' = Q

"1
T[ ]!Q . 

35. Let A  and B  be matrices in 
 
M

m!n
F( ) . We say that B  is similar to A  if there exists an 

invertible matrix Q  such that B = Q
!1
AQ . 

36. Let V  be the vector space of continuous real-valued functions on the interval 0,2![ ] . Fix a 

function g !V . The function  h :V ! !  defined by h x( ) =
1

2!
x t( )g t( )

0

2!

" dt  is a linear 

functional on V . In the cases that g t( )  equals sinnt  or cosnt , h x( )  is often called the 
 n th Fourier coefficient of x . 
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ELEMENTARY MATRIX OPERATIONS AND SYSTEMS OF LINEAR EQUATIONS 
37. Let 

 
A !M

m"n
F( ) . Any one of the following three operations on the rows [columns] of A  is 

called an elementary row [column] operation: 
  a) interchanging any two rows [columns] of A , 
  b) multiplying any row [column] of A  by a nonzero scalar, 
  c) adding any scalar multiple of a row [column] of A  to another row [column]. 
38. An elementary matrix is a matrix obtained by performing an elementary operation on 

 
I
n

. 
39. If 

 
A !M

m"n
F( ) , we define the rank of A , denoted rank A( ) , to be the rank of the linear 

transformation  LA :F
n
! F m . 

40. Elementary operations preserve the rank of a matrix. 
41. A system Ax = b  of m  linear equations in n  unknowns is said to be homogenous if b = 0 . 

Otherwise the system is said to be nonhomogenous. 
42. Let K  be the solution set of a system of linear equations Ax = b , and let K

H
 be the solution 

set of the corresponding homogenous system Ax = 0 . Then for any solution s  to Ax = b , 
K = s{ } + K

H
= s + k : k !K

H{ } . 
43. Two systems of linear equations are called equivalent if they have the same solution set. 
44. A matrix is said to be in reduced row echelon form if the following are satisfied: 
  a) Any row containing a nonzero entry precedes any row in which all the entries 
   are zero (if any). 
  b) The first nonzero entry in each row is the only nonzero entry in its column. 
  c) The first nonzero entry in each row is 1 and it occurs in a column to the right 
   of the first nonzero entry in the preceding row. 
45. Gaussian [Gauss-Jordan] Elimination: Elementary row operations are used to reduce a matrix 

to row [reduced-row] echelon form in order to find a solution set to the system of linear 
equations. 

DETERMINANTS 

46. If A =
a b

c d

!
"#

$
%&

 is a 2 ! 2  matrix with entries from a field  F , then we define the 

determinant of A , denoted det A( )  or A , to be the scalar ad ! bc . 
47. Let 

 
A !M

2"2
F( ) . Then the determinant of A  is nonzero if and only if A  is invertible. 

Moreover, if A  is invertible, then A!1
=

1

det A( )

A
22

!A
12

!A
21

A
11

"
#$

%
&'

. 

48. Let 
 
A !M

n"n
F( ) . If n = 1 , so that A = A

11( ) , we define det A( ) = A
11

. For n ! 2 , we define 

det A( )  recursively as, 
 

det A( ) = !1( )
1+ j
A
1 j idet

!A
1 j( )

j=1

n

" . The scalar, 
 
!1( )

i+ j
det !Aij( )  is called 

the cofactor of the entry of A  in row i , column j . 
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49. If 

 
A !M

n"n
F( )  has a row consisting entirely of zeros, then det A( ) = 0 . 

50. The determinant of a square matrix A  can be evaluated along any row, such that 

 

det A( ) = !1( )
i+ j
Aij idet

!Aij( )
j=1

n

" , for any integer 1 ! i ! n . 

51. If 
 
A !M

n"n
F( )  and B  is a matrix obtained from A  by interchanging any two rows of A , 

then det B( ) = !det A( ) . 
52. If 

 
A !M

n"n
F( )  and B  is a matrix obtained from A  by adding a multiple of one row of A  

to another row of A , then det B( ) = det A( ) . 
53. If 

 
A !M

n"n
F( )  and B  is a matrix obtained from A  by multiplying one row of A  by some 

nonzero scalar  k !F , then det B( ) = k det A( ) . 
54. If 

 
A !M

n"n
F( )  has rank less than n , then det A( ) = 0 . 

55. The determinant of an upper triangular matrix is the product of its diagonal entries. 

56. A matrix 
 
A !M

n"n
F( )  is invertible if and only if det A( ) ! 0 . Also, det A!1( ) =

1

det A( )
. 

57. For any 
 
A !M

n"n
F( ) , det AT( ) = det A( ) . 

58. Let Ax = b  be the matrix form of a system of n  linear equations in n  unknowns, where 
x = x

1
, x

2
,..., x

n( )
T . If det A( ) ! 0 , then this system has a unique solution, and for each 

k = 1,2,...,n( ) , x
k
=
det M

k( )
det A( )

, where M
k
 is the n ! n  matrix obtained from A  by replacing 

column k  of A  by b . 
59. A function 

 
! :M

n"n
F( )# F  is called an n -linear function if it a linear function of each 

row of an n ! n  matrix when the remaining n !1  rows are held fixed, that is, !  is n -linear 

if, for every r = 1,2,...,n , we have 

 

!

a
1

!

a
r"1

u + kv

a
r+1

!

a
n

#

$

%
%
%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
(
(

= !

a
1

!

a
r"1

u

a
r+1

!

a
n

#

$

%
%
%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
(
(

+ k!

a
1

!

a
r"1

v

a
r+1

!

a
n

#

$

%
%
%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
(
(

 whenever k  is a scalar 

and u,  v , and each a
i
 are vectors in  F

n . 
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60. A linear operator T  on a finite-dimensional vector space V  is called diagonalizable if there 

is an ordered basis !  for V  such that T[ ]!  is a diagonal matrix. 
61. Let T  be a linear operator on a vector space V . A nonzero vector v !V  is called an 

eigenvector of T  if there exists a scalar !  such that T v( ) = !v . The scalar !  is called the 
eigenvalue corresponding to the eigenvector v . 

62. Let 
 
A !M

n"n
F( ) . The polynomial 

 
f t( ) = det A ! tIn( )  is called the characteristic 

polynomial of A . To find the eigenvalue(s) of a matrix, we compute 
 
det A ! tI

n( ) . 
63. Let T  be a linear operator on a vector space V , and let !  be an eigenvalue of T . A vector 

v !V  is an eigenvector of T  corresponding to !  if and only if v ! 0  and 
 
v !N T " #I( ) . 

64. A polynomial f t( )  in 
 
P F( )  splits over  F  if there are scalars c,a

1
,...,a

n
 (not necessarily 

distinct) in  F  such that 
 
f t( ) = c t ! a

1( ) t ! a2( )… t ! an( ) . 
65. Let !  be an eigenvalue of a linear operator or matrix with characteristic polynomial f t( ) . 

The (algebraic) multiplicity of !  is the largest positive integer k  for which t ! "( )
k  is a 

factor of f t( ) . 
66. Let T  be a linear operator on a vector space V , and let !  be an eigenvalue of T . Define 

 
E

!
= x "V :T x( ) = !x{ } = N T # !I

V( ) . The set E
!

 is called the eigenspace of T  
corresponding to the eigenvalue ! . 

67. Let T  be a linear operator on an n -dimensional vector space V . Then T  is diagonalizable if 
and only if both of the following conditions hold: 

  a) The characteristic polynomial of T  splits. 
  b) For each eigenvalue !  of T , the multiplicity of !  equals 

 
n ! rank T ! "I( ) . 

INNER PRODUCT SPACES 
68. Let V  be a vector space over  F . An inner product on V  is a function that assigns, to every 

ordered pair of vectors x  and y  in V , a scalar  F , denoted x, y , such that !x, y, z "V  and 
all  c !F , the following hold: 

  a) x + z, y = x, y + z, y  
  b) cx, y = c x, y  

  c) x, y = y, x , where the over-bar denotes complex conjugation 
  d) x, x > 0 , if x ! 0  
69. Let 

 
A !M

m"n
F( ) . We define the conjugate transpose or adjoint of A  to be the n ! m  

matrix A*  such that A*( )
ij
= Aji

, for all i, j . 
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70. Let V  be an inner product space. For x !V , we define the norm or length of x  by 

x = x, x . 
71. Let V  be an inner product space. Vectors x, y !V  are orthogonal (perpendicular) if 

x, y = 0 . A subset S  of V  is orthogonal if any two distinct vectors in S  are orthogonal. A 
vector x !V  is a unit vector if x = 1 . Finally, a subset S  of V  is orthonormal if S  is 
orthogonal and consists entirely of unit vectors. 

72. The process of multiplying a nonzero vector by the reciprocal of its length, or norm, is called 
normalizing. 

73. Let V  be an inner product space. A subset of V  is an orthonormal basis for V  if it an 
ordered basis that is orthonormal. 

74. The Gram-Schmidt Process: Let V  be an inner product space and S = w
1
,w

2
,...,w

n{ }  be a 
linearly independent subset of V . Define S ' = v

1
,v
2
,...,v

n{ } , where v
1
= w

1
, and 

vk = wk !
wk ,vj

vj
2
vj

j=1

k!1

" , for 2 ! k ! n . Then S '  is an orthogonal set of nonzero vectors such 

that span S '( ) = span S( ) . 
75. Let !  be an orthonormal subset (possibly infinite) of an inner product space V , and let 

x !V . The Fourier coefficients of x  relative to !  are the scalars x, y , where y !" . 
76. Let S  be a nonempty subset of an inner product space V . We define S! , or “S  perp”, to be 

the set of all vectors in V  that are orthogonal to every vector in S ; that is, 
S
!
= x "V : x, y = 0 for all y "S{ } . The set S!  is called the orthogonal complement of S . 

77. Let V  be an inner product space, and let T  be a linear operator on V . We say that T  is 
normal if TT *

= T
*
T . 

78. Let T  be a linear operator on an inner product space V . We say that T  is self-adjoint 
(Hermitian) if T = T

* . 
79. Let T  be a linear operator on a finite-dimensional inner product space V  over  F . If 

T x( ) = x  for all x !V , we call T  a unitary operator if 
  F = !  and an orthogonal 

operator if 
  F = ! . In the infinite-dimensional case, it is generally called an isometry. 

80. A square matrix A  is called an orthogonal matrix if  AT
A = AA

T
= I  and unitary if 

 A
*
A = AA

*
= I . 

81. Let V  be a real inner product space. A function f :V !V  is called a rigid motion if 
f x( ) ! f y( ) = x ! y  for all x, y !V . 
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82. Let V  be an inner product space, and let T :V !V  be a projection. We say that T  is an 

orthogonal projection if 
 
R T( )

!

= N T( )  and 
 
N T( )

!

=R T( ) . 
83. The Spectral Theorem: Suppose that T  is a linear operator on a finite-dimensional inner 

product space V  over  F  with the distinct eigenvalues !
1
,!

2
,...,!

k
. Assume that T  is 

normal if 
  F = !  and that T  is self-adjoint if 

  F = ! . For each i,  1 ! i ! k , let W
i
 be the 

eigenspace of T  corresponding to the eigenvalue !
i
, and let T

i
 be the orthogonal projection 

of V  on W
i
. Then the following statements are true: 

  a) 
 
V =W

1
!W

2
!!!W

k
, 

  b) If W
i
'  denotes the direct sum of the subspaces Wj  for j ! i , then W

i

!
=W

i
' , 

  c) TiTj
= !

ij
T
i , for 1 ! i,  j ! k , 

  d) 
  
I = T

1
+ T

2
+!+ T

k
, 

  e) 
 
T = !

1
T
1
+ !

2
T
2
+!+ !

k
T
k
. 

84. The set !
1
,!

2
,...,!

k{ }  of eigenvalues of T  is called the spectrum of T . 
85. The sum 

  
I = T

1
+ T

2
+!+ T

k
 from 83. (d) is called the resolution of the identity operator 

induced by T . 
86. The sum 

 
T = !

1
T
1
+ !

2
T
2
+!+ !

k
T
k
 from 83. (e) is called the spectral decomposition of T . 

CANONICAL FORMS 
87. Let T  be a linear operator on a vector space V and let !  be a scalar. A nonzero vector x  in 

V  is called a generalized eigenvector of T  corresponding to !  if 
 
T ! "I( )

p
x( ) = 0 , for 

some positive integer p . 
88. Let T  be a linear operator on a vector space V , and let !  be an eigenvalue of T . The 

generalized eigenspace of T  corresponding to ! , denoted, K
!

, is the subset of V  defined 

by 
 
K

!
= x "V : T # !I( )

p
x( ) = 0,  for some positive integer p{ } . 

89. Let T  be a linear operator on a vector space V , and let x  be a generalized eigenvector of T  
corresponding to the eigenvalue ! . Suppose that p  is the smallest positive integer for which 

 
T ! "I( )

p
x( ) = 0 . Then the ordered set 

 
T ! "I( )

p!1
x( ), T ! "I( )

p!2
x( ),..., T ! "I( ) x( ), x{ }  

is called a cycle of generalized eigenvectors of T  corresponding to ! . The vectors 

 
T ! "I( )

p!1
x( )  and x  are called the initial vector and the end vector of the cycle, 

respectively. We say that the length of the cycle is p . 
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90. Let T  be a linear operator on a finite-dimensional vector space V , and suppose the 

characteristic polynomial of T  splits, and let !  be the union of ordered bases of generalized 

eigenspaces of V , such that 

 

T[ ]! =

A
1

O ! O

O A
2
! O

" " "

O O ! A
k

"

#

$
$
$
$

%

&

'
'
'
'

, where each O  is a zero matrix, and 

each A
i
 is a square matrix of the form !( )  or 

 

! 1 0 ! 0 0

0 ! 1 ! 0 0

" " " " "

0 0 0 ! ! 1

0 0 0 ! 0 !

"

#

$
$
$
$
$$

%

&

'
'
'
'
''

 for some eigenvalue 

!  of T . Such a matrix A
i
 is called a Jordan block corresponding to ! , and the matrix T[ ]!  

is called a Jordan canonical form of T . We also say that the ordered basis !  is a Jordan 
canonical basis for T . 

91. Let 
 
A !M

n"n
F( )  be such that the characteristic polynomial of A  (and hence L

A
) splits. 

Then the Jordan canonical form of A  is defined to be the Jordan canonical form of the 
linear operator L

A
 on  F

n . Example: 

 Let 

  

A =

3 1 !2
!1 0 5

!1 !1 4

"

#

$
$

%

&

'
'
(M

3)3 !( ) , to find the Jordan canonical form for A , we need to find 

a Jordan canonical basis for T = L
A

. The characteristic polynomial of A  is 

 
f t( ) = det A ! tI( ) = ! t ! 3( ) t ! 2( )

2 . Hence !
1
= 3  and !

2
= 2  are eigenvalues of A  with 

multiplicities 1 and 2, respectively. Then dim K
!1

( ) = 1 , and dim K
!2

( ) = 2 . Then 

 
K

!1
= N T " 3I( ) , and 

 
K

!
2

= N T " 2I( )
2( ) . Since 

 
E

!1
= N T " 3I( ) , we have E

!
1

= K
!
1

. 

Observe that !1,2,1( )  is an eigenvector of T  corresponding to !
1
= 3 ; therefore 

!
1
=

"1
2

1

#

$

%
%

&

'

(
(

)

*
+

,
+

-

.
+

/
+

 is a basis for K
!
1

. Since dim K
!2

( ) = 2  and a generalized eigenspace has a 

basis consisting of a union of cycles, this basis is either a union of two cycles of length 1, or a 
single cycle of length 2. Continued on next page… 
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91. …Continued. The former case (union of two cycles of length 1) is impossible because the 

vectors in the basis would be eigenvectors—contradicting the face that dim E
!2

( ) = 1 . 
Therefore the desired basis is a single cycle of length 2. A vector v  is the end vector of such 

a cycle if and only if 
 
A ! 2I( )v " 0 , but 

 
A ! 2I( )

2

v = 0 . Then 
1

!3
!1

"

#

$
$

%

&

'
'
,

!1
2

0

"

#

$
$

%

&

'
'

(

)
*

+
*

,

-
*

.
*

 is a basis for 

the solution space of the homogenous system 
 
A ! 2I( )

2

x = 0 . Now choose a vector v  in this 
set so that 

 
A ! 2I( )v " 0 . The vector v = !1,2,0( )  is an acceptable candidate. Since 

 
A ! 2I( )v = 1,!3,!1( ) , we obtain the cycle of generalized eigenvectors 

 

!
2
= A " 2I( )v,v{ } =

1

"3
"1

#

$

%
%

&

'

(
(
,

"1
2

0

#

$

%
%

&

'

(
(

)

*
+

,
+

-

.
+

/
+

 as a basis for K
!
2

. Finally, we can take the union of 

these two bases to obtain ! = !
1
"!

2
=

#1
2

1

$

%

&
&

'

(

)
)
,

1

#3
#1

$

%

&
&

'

(

)
)
,

#1
2

0

$

%

&
&

'

(

)
)

*

+
,

-
,

.

/
,

0
,

, which is a Jordan canonical 

basis for A . Therefore, J = T[ ]! =

3 0 0

0 2 1

0 0 2

"

#

$
$

%

&

'
'

 is a Jordan canonical form for A . Notice that 

A  is similar to J ; in fact, J = Q!1
AQ , where Q  is the matrix whose columns are the vectors 

in ! . 
92. Each generalized eigenspace K

!
i

 contains an ordered basis !
i
 consisting of a union of 

disjoint cycles of generalized eigenvectors corresponding to !
i
. So the union 

 

! = !
i

i=1

k

!  is a 

Jordan canonical basis for T . For each i , let T
i
 be the restriction of T  to K

!
i

, and let 

A
i
= T

i[ ]
!
i

. Then A
i
 is the Jordan canonical form of T

i
, and 

 

J = T[ ]! =

A
1

O ! O

O A
2
! O

" " "

O O ! A
k

"

#

$
$
$
$

%

&

'
'
'
'

 

is the Jordan canonical form of T . 
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93. To help visualize each of the matrices A

i
 in a Jordan canonical form, and ordered bases !

i
, 

we use an array of dots called a dot diagram of T
i
, where T

i
 is the restriction of T  to K

!
i

. 
Suppose that !

i
 is a disjoint union of cycles of generalized eigenvectors !

1
,!

2
,...,!

n
i

 with 
lengths 

 
p
1
! p

2
!! ! p

ni
, respectively. The dot diagram of T

i
 contains one dot for each 

vector in !
i
, and the dots are configured according to the following rules: 

  a) The array consists of n
i
 columns (one column for each cycle). 

  b) Counting from left to right, the j th column consists of the pj  dots that 
   correspond to the vectors of ! j  starting with the initial vector at the top and 
   continuing down to the end vector. 
 Denote the end vectors of the cycles by v

1
,v
2
,...,v

n
i

. Example: 

 

  

• T ! "
i
I( )

p
1
!1

v
1( )

• T ! "
i
I( )

p
1
!2

v
1( )

!

!

!

• T ! "
i
I( ) v1( )

•v
1

  

• T ! "
i
I( )

p
1
!1

v
2( )

• T ! "
i
I( )

p
1
!2

v
2( )

!

!

• T ! "
i
I( ) v2( )

•v
2

   !    

  

• T ! "
i
I( )

pni !1 v
ni

( )

• T ! "
i
I( )

pni !2 v
ni

( )
!

• T ! "
i
I( ) vni( )

•v
ni

 

94. A linear operator T  on a vector space V , [n ! n  matrix A ], is called nilpotent if T p
= T

0
, 

[ Ap
= O ], for come positive integer p . 

95. Let T  be a linear operator on a finite-dimensional vector space. A polynomial p t( )  is called 
the minimal polynomial of T  if p t( )  is a monic (leading coefficient is 1) polynomial of 
least positive degree for which p T( ) = T

0
. It follows for 

 
A !M

n"n
F( ) , if p t( )  is a monic 

polynomial of least positive degree for which p A( ) = O . 


