LINEAR ALGEBRA

VECTOR SPACES

1. A vector space V over a field \mathcal{F} consists of a set on which two operations (addition and scalar multiplication, respectively) are defined so that $\forall x, y \in V, \exists x + y \in V$, and $\forall a \in \mathcal{F} \text{ and } x \in V, \exists ax \in V$, such that the following conditions hold:

a) $\forall x, y \in V, x + y = y + x$ (commutativity of addition)

- **b)** $\forall x, y, z \in V, (x + y) + z = x + (y + z)$ (associativity of addition)
- c) $\exists ! 0 \in V$, such that x + 0 = x, $\forall x \in V$
- **d)** $\forall x \in V, \exists y \in V \text{ such that } x + y = 0$
- e) $\forall x \in V, 1x = x$
- **f)** $\forall a, b \in \mathcal{F} \text{ and } x \in V, (ab)x = a(bx)$
- **g**) $\forall a \in \mathcal{F} \text{ and } x, y \in V, a(x+y) = ax + ay$
- **h**) $\forall a, b \in \mathcal{F} \text{ and } x \in V, (a+b)x = ax + bx.$
- The set of all *m×n* matrices with entries from a field *F* is a vector space, which we denote by *M_{m×n}(F)*, with the following operations of matrix addition and scalar multiplication: For *A*, *B* ∈ *M_{m×n}(F)* and *c* ∈ *F*,

a)
$$(A+B)_{ii} = A_{ij} + B_{ij}$$

b)
$$(cA)_{ii} = cA_{ii}$$
, for $1 \le i \le m$ and $1 \le j \le n$.

- 3. A polynomial of degree *n*, or \mathbf{P}_n , with coefficients from a field \mathcal{F} is an expression of the form, $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, where *n* is a nonnegative integer and each a_k , called the **coefficient** of x^k , is in \mathcal{F} .
- 4. A $W \subseteq V$, where V is a vector space over a field \mathcal{F} is called a **subspace** of V if W is a vector space over \mathcal{F} with the operations of addition and scalar multiplication defined on V, and if and only if the follow properties hold:
 - a) $x + y \in W$ whenever $x \in W$ and $y \in W$ (closed under addition)
 - **b)** $cx \in W$ whenever $c \in \mathcal{F}$ and $x \in W$ (closed under scalar multiplication)
 - c) W has a zero vector
 - d) Each vector in W has an additive inverse in W.
- 5. The transpose A^T of an $m \times n$ matrix A is the $n \times m$ matrix obtained by interchanging the rows with the columns, that is, $(A^T)_{ii} = A_{ji}$. A matrix is symmetric if and only if $A^T = A$.
- 6. The trace of an $n \times n$ matrix M is the sum of its diagonal entries, that is, $tr(M) = M_{11} + M_{22} + ... + M_{nn}$.
- 7. A vector space V is called the **direct sum** of W_1 and W_2 if W_1 and W_2 are subspaces of V such that $W_1 \cap W_2 = \{0\}$ and $W_1 + W_2 = V$. We denote the direct sum by $V = W_1 \oplus W_2$.

LINEAR ALGEBRA

VECTOR SPACES

- 8. Let S be a nonempty subset of a vector space V. The span of S, denoted span(S), is the set consisting of all linear combinations of the vectors in S. Also, span(\emptyset) = {0}.
- 9. A subset S of a vector space V generates (or spans) V if span(S) = V.
- **10.** A subset S of a vector space V is called **linearly dependent** if there exist a finite number of distinct vectors $u_1, u_2, ..., u_n$ in S and scalars $a_1, a_2, ..., a_n$, not all zero, such that $a_1u_1 + a_2u_2 + \cdots + a_nu_n = 0$. A subset S of a vector space V that is not linearly dependent is called **linearly independent**.
- 11. A basis β for a vector space V is a linearly independent subset of V that generates V.
- 12. A vector space is called **finite-dimensional** if it has a basis consisting of a finite number of vectors. The unique number of vectors in each basis for V is called the **dimension** of V and is denoted dim(V). A vector space, not finite-dimensional, is called **infinite-dimensional**.

LINEAR TRANSFORMATIONS AND MATRICES

- 13. Let V and W be vector spaces (over F). We call a function T: V → W a linear transformation from V to W, or simply linear, if for all x, y ∈ V and c ∈ F, we have,
 a) T(x+y) = T(x) + T(y),
 b) T(cx) = cT(x).
- 14. For any angle θ , define $T_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ by the rule: $T_{\theta}(a_1, a_2)$ is the vector obtained by rotating (a_1, a_2) counterclockwise by θ if $(a_1, a_2) \neq (0, 0)$, and $T_{\theta}(0, 0) = (0, 0)$. Then $T_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation that is called the **rotation by** θ . Furthermore, $T_{\theta}(a_1, a_2) = (a_1, a_2) = (a_1, a_2)$

 $T_{\theta}(a_1, a_2) = (a_1 \cos \theta - a_2 \sin \theta, a_1 \sin \theta + a_2 \cos \theta).$

- 15. Let V and W be vector spaces, and let T: V → W be linear. We define the null space (or kernal), N(T) of T to be the set of all vectors x in V such that T(x) = 0, that is, N(T) = {x ∈ V : T(x) = 0}. We define the range (or image) R(T) of T to be the subset of W consisting of all images (under T) of vectors in V, that is, R(T) = {T(x) : x ∈ V}.
- 16. Let V and W be vector spaces, and let $T: V \to W$ be linear. If $\beta = \{v_1, v_2, ..., v_n\}$ is a basis for V, then $\mathcal{R}(T) = \operatorname{span}(T(\beta)) = \operatorname{span}(\{T(v_1), T(v_2), ..., T(v_n)\})$.
- 17. Let V and W be vector spaces, and let $T: V \to W$ be linear. If $\mathcal{N}(T)$ and $\mathcal{R}(T)$ are finite-dimensional, then we define the **nullity of** T, denoted nullity(T), and the **rank of** T, denoted rank(T), to be the dimensions of $\mathcal{N}(T)$ and $\mathcal{R}(T)$, respectively.
- **18.** Let V and W be vector spaces, and let $T: V \to W$ be linear. If V is finite-dimensional, then nullity $(T) + \operatorname{rank}(T) = \dim(V)$.

LINEAR ALGEBRA

LINEAR TRANSFORMATIONS AND MATRICES

- 19. For the vector space \mathcal{F}^n , we call $\{e_1, e_2, ..., e_n\}$ the standard ordered basis for \mathcal{F}^n . For the vector space $\mathbf{P}_n(\mathcal{F})$, we call $\{1, x, ..., x^n\}$ the standard ordered basis for $\mathbf{P}_n(\mathcal{F})$.
- **20.** Let $\beta = \{u_1, u_2, ..., u_n\}$ be an ordered basis for a finite-dimensional vector space V. For $x \in V$

let $a_1, a_2, ..., a_n$ be the unique scalars such that, $x = \sum_{i=1}^n a_i u_i$. We define the **coordinate vector**

of x relative to β , denoted $[x]_{\beta}$, by $[x]_{\beta} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$.

- **21.** Using the previous notation, we call the $m \times n$ matrix A defined by $A_{ij} = a_{ij}$ the **matrix** representation of T in the ordered bases β and γ and write $A = [T]_{\beta}^{\gamma}$. If V = W and $\beta = \gamma$, then we write $A = [T]_{\beta}$.
- **22.** Let $T, U: V \to W$ be arbitrary functions, where V and W are vector spaces over \mathcal{F} , and let $a \in \mathcal{F}$. We define $T + U: V \to W$ by (T + U)(x) = T(x) + U(x), $\forall x \in V$, and $aT: V \to W$ by (aT)(x) = aT(x), $\forall x \in V$.
- **23.** Let *V* and *W* be vector spaces over \mathcal{F} . We denote the vector space of all linear transformations from *V* into *W* by $\mathcal{L}(V, W)$.
- **24.** Let $A \in \mathcal{M}_{m \times n}(\mathcal{F})$, $B \in \mathcal{M}_{n \times p}(\mathcal{F})$, then the **matrix multiplication** given by

 $x_{3,4} = (1, 2, 3, \overline{4}) \cdot (a, b, c, d) = 1 \times a + 2 \times b + 3 \times c + 4 \times d.$

- 25. We define the Kronecker delta δ_{ij} , by $\delta_{ij} = 1$ if i = j and $\delta_{ij} = 0$ if $i \neq j$. Thus, the $n \times n$ identity matrix I_n is defined by $(I_n)_{ij} = \delta_{ij}$.
- **26.** Let $A \in \mathcal{M}_{m \times n}(\mathcal{F})$, we denote by L_A the mapping $L_A : \mathcal{F}^n \to \mathcal{F}^m$ defined by $L_A(x) = Ax$, for each column vector $x \in \mathcal{F}^n$. We call L_A the **left-multiplication transformation**.
- **27.** Let *V* and *W* be vector spaces, and let $T: V \to W$ be linear. A function $U: W \to V$ is said to be an **inverse** of *T* if $TU = I_W$ and $UT = I_V$. If *T* has an inverse, then *T* is said to be **invertible**. If *T* is invertible, then the inverse of *T* is unique, and is denoted T^{-1} .
- **28.** Let A be an $n \times n$ matrix. A is invertible if \exists an $n \times n$ matrix B such that AB = BA = I.

LINEAR ALGEBRA

LINEAR TRANSFORMATIONS AND MATRICES

- **29.** Let V and W be vector spaces. We say that V is **isomorphic to** W if there exists a linear transformation $T: V \rightarrow W$ that is invertible. Such a linear transformation is called an **isomorphism** from V to W.
- **30.** Let β be an ordered basis for an *n*-dimensional vector space *V* over the field \mathcal{F} . The standard representation of *V* with respect to β is the function $\phi_{\beta} : V \to \mathcal{F}^n$ defined by $\phi_{\beta}(x) = [x]_{\beta}, \forall x \in V$.
- **31.** Let *V* and *W* be vector spaces of dimension *n* and *m*, respectively, and let $T: V \to W$ be a linear transformation. Define $A = [T]_{\beta}^{\gamma}$, where β and γ are arbitrary ordered bases of *V* and *W*, respectively. We now use ϕ_{β} and ϕ_{γ} to form a relationship with the linear transformation *T* and $L_A: \mathcal{F}^n \to \mathcal{F}^m$. Consider this figure:

$$V \xrightarrow{T} W$$

 $\phi_{\beta} \downarrow \qquad \qquad \downarrow \phi_{\gamma}$
 $\mathcal{F}^{n} \xrightarrow{L_{A}} \mathcal{F}^{m}$, where we can conclude that $L_{A}\phi_{\beta} = \phi_{\gamma}T$.

- **32.** Let β and β' be two ordered bases for a finite-dimensional vector space V, and let $Q = [I_V]_{\beta'}^{\beta}$, then,
 - a) Q is invertible,
 - **b)** for any $v \in V$, $[v]_{\beta} = Q[v]_{\beta'}$.
- **33.** The matrix $Q = [I_V]_{\beta'}^{\beta}$ above is called a **change of coordinate matrix**. We say that Q **changes** β' -coordinates into β -coordinates. Observe that if $\beta = \{x_1, x_2, ..., x_n\}$ and $\beta' = \{x'_1, x'_2, ..., x'_n\}$, then $x'_j = \sum_{i=1}^n Q_{ij} x_i$, j = 1, 2, ..., n that is, the *j* th column of Q is $[x'_j]_{\beta}$.
- **34.** Let *T* be a linear operator on a finite-dimensional vector space *V*, and let β and β' be ordered bases for *V*. Suppose that *Q* is the change of coordinate matrix that changes β' -coordinates into β -coordinates, then $[T]_{\beta'} = Q^{-1}[T]_{\beta}Q$.
- **35.** Let A and B be matrices in $\mathcal{M}_{m \times n}(\mathcal{F})$. We say that B is **similar** to A if there exists an invertible matrix Q such that $B = Q^{-1}AQ$.
- **36.** Let V be the vector space of continuous real-valued functions on the interval $[0,2\pi]$. Fix a function $g \in V$. The function $h: V \to \mathbb{R}$ defined by $h(x) = \frac{1}{2\pi} \int_0^{2\pi} x(t)g(t)dt$ is a linear functional on V. In the cases that g(t) equals $\sin nt$ or $\cos nt$, h(x) is often called the *n* **th Fourier coefficient of** x.

LINEAR ALGEBRA

ELEMENTARY MATRIX OPERATIONS AND SYSTEMS OF LINEAR EQUATIONS

- **37.** Let $A \in \mathcal{M}_{m \times n}(\mathcal{F})$. Any one of the following three operations on the rows [columns] of A is
 - called an elementary row [column] operation:
 - a) interchanging any two rows [columns] of A,
 - **b)** multiplying any row [column] of A by a nonzero scalar,
 - c) adding any scalar multiple of a row [column] of A to another row [column].
- **38.** An elementary matrix is a matrix obtained by performing an elementary operation on I_n .
- **39.** If $A \in \mathcal{M}_{m \times n}(\mathcal{F})$, we define the **rank** of *A*, denoted rank(*A*), to be the rank of the linear

transformation $L_A: \mathcal{F}^n \to \mathcal{F}^m$.

- **40.** Elementary operations preserve the rank of a matrix.
- **41.** A system Ax = b of *m* linear equations in *n* unknowns is said to be **homogenous** if b = 0. Otherwise the system is said to be **nonhomogenous**.
- **42.** Let *K* be the solution set of a system of linear equations Ax = b, and let $K_{\rm H}$ be the solution set of the corresponding homogenous system Ax = 0. Then for any solution *s* to Ax = b, $K = \{s\} + K_{\rm H} = \{s + k : k \in K_{\rm H}\}$.
- 43. Two systems of linear equations are called equivalent if they have the same solution set.
- 44. A matrix is said to be in reduced row echelon form if the following are satisfied:
 - a) Any row containing a nonzero entry precedes any row in which all the entries are zero (if any).
 - b) The first nonzero entry in each row is the only nonzero entry in its column.
 - c) The first nonzero entry in each row is 1 and it occurs in a column to the right of the first nonzero entry in the preceding row.
- **45.** Gaussian [Gauss-Jordan] Elimination: Elementary row operations are used to reduce a matrix to row [reduced-row] echelon form in order to find a solution set to the system of linear equations.

DETERMINANTS

46. If $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is a 2×2 matrix with entries from a field \mathcal{F} , then we define the

determinant of A, denoted det(A) or |A|, to be the scalar ad - bc.

47. Let $A \in \mathcal{M}_{2\times 2}(\mathcal{F})$. Then the determinant of A is nonzero if and only if A is invertible.

Moreover, if *A* is invertible, then $A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} A_{22} & -A_{12} \\ -A_{21} & A_{11} \end{pmatrix}$.

48. Let $A \in \mathcal{M}_{n \times n}(\mathcal{F})$. If n = 1, so that $A = (A_{11})$, we define $\det(A) = A_{11}$. For $n \ge 2$, we define $\det(A)$ recursively as, $\det(A) = \sum_{j=1}^{n} (-1)^{1+j} A_{1j} \cdot \det(\tilde{A}_{1j})$. The scalar, $(-1)^{i+j} \det(\tilde{A}_{ij})$ is called the **cofactor** of the entry of A in row *i*, column *j*.

LINEAR ALGEBRA

DETERMINANTS

49. If $A \in \mathcal{M}_{n \times n}(\mathcal{F})$ has a row consisting entirely of zeros, then det(A) = 0.

50. The determinant of a square matrix A can be evaluated along any row, such that

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} A_{ij} \cdot \det(\tilde{A}_{ij}), \text{ for any integer } 1 \le i \le n.$$

- **51.** If $A \in \mathcal{M}_{n \times n}(\mathcal{F})$ and *B* is a matrix obtained from *A* by interchanging any two rows of *A*, then det(*B*) = -det(*A*).
- **52.** If $A \in \mathcal{M}_{n \times n}(\mathcal{F})$ and *B* is a matrix obtained from *A* by adding a multiple of one row of *A* to another row of *A*, then det(*B*) = det(*A*).
- **53.** If $A \in \mathcal{M}_{n \times n}(\mathcal{F})$ and *B* is a matrix obtained from *A* by multiplying one row of *A* by some nonzero scalar $k \in \mathcal{F}$, then det $(B) = k \det(A)$.
- **54.** If $A \in \mathcal{M}_{n \times n}(\mathcal{F})$ has rank less than *n*, then det(A) = 0.
- 55. The determinant of an upper triangular matrix is the product of its diagonal entries.
- **56.** A matrix $A \in \mathcal{M}_{n \times n}(\mathcal{F})$ is invertible if and only if $\det(A) \neq 0$. Also, $\det(A^{-1}) = \frac{1}{\det(A)}$.
- **57.** For any $A \in \mathcal{M}_{n \times n}(\mathcal{F})$, $\det(A^T) = \det(A)$.
- **58.** Let Ax = b be the matrix form of a system of *n* linear equations in *n* unknowns, where $x = (x_1, x_2, ..., x_n)^T$. If det $(A) \neq 0$, then this system has a unique solution, and for each $k = (1, 2, ..., n), x_k = \frac{\det(M_k)}{\det(A)}$, where M_k is the $n \times n$ matrix obtained from A by replacing

column k of A by b.

59. A function $\delta : \mathcal{M}_{n \times n}(\mathcal{F}) \to \mathcal{F}$ is called an *n*-linear function if it a linear function of each row of an $n \times n$ matrix when the remaining n-1 rows are held fixed, that is, δ is *n*-linear

if, for every
$$r = 1, 2, ..., n$$
, we have $\delta \begin{pmatrix} a_1 \\ \vdots \\ a_{r-1} \\ u + kv \\ a_{r+1} \\ \vdots \\ a_n \end{pmatrix} = \delta \begin{pmatrix} a_1 \\ \vdots \\ a_{r-1} \\ u \\ a_{r+1} \\ \vdots \\ a_n \end{pmatrix} + k \delta \begin{pmatrix} a_1 \\ \vdots \\ a_{r-1} \\ v \\ a_{r+1} \\ \vdots \\ a_n \end{pmatrix}$ whenever k is a scalar

and u, v, and each a_i are vectors in \mathcal{F}^n .

LINEAR ALGEBRA

DIAGONALIZATION

- **60.** A linear operator T on a finite-dimensional vector space V is called **diagonalizable** if there is an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix.
- 61. Let T be a linear operator on a vector space V. A nonzero vector $v \in V$ is called an eigenvector of T if there exists a scalar λ such that $T(v) = \lambda v$. The scalar λ is called the eigenvalue corresponding to the eigenvector v.
- 62. Let $A \in \mathcal{M}_{n \times n}(\mathcal{F})$. The polynomial $f(t) = \det(A tI_n)$ is called the **characteristic** polynomial of A. To find the eigenvalue(s) of a matrix, we compute $\det(A tI_n)$.
- **63.** Let *T* be a linear operator on a vector space *V*, and let λ be an eigenvalue of *T*. A vector $v \in V$ is an eigenvector of *T* corresponding to λ if and only if $v \neq 0$ and $v \in \mathcal{N}(T \lambda I)$.
- 64. A polynomial f(t) in $\mathbf{P}(\mathcal{F})$ splits over \mathcal{F} if there are scalars $c, a_1, ..., a_n$ (not necessarily distinct) in \mathcal{F} such that $f(t) = c(t a_1)(t a_2)...(t a_n)$.
- 65. Let λ be an eigenvalue of a linear operator or matrix with characteristic polynomial f(t). The (algebraic) multiplicity of λ is the largest positive integer k for which $(t - \lambda)^k$ is a factor of f(t).
- 66. Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. Define $E_{\lambda} = \{x \in V : T(x) = \lambda x\} = \mathcal{N}(T \lambda I_{V})$. The set E_{λ} is called the **eigenspace** of T corresponding to the eigenvalue λ .
- 67. Let T be a linear operator on an n-dimensional vector space V. Then T is diagonalizable if and only if both of the following conditions hold:
 - **a)** The characteristic polynomial of T splits.
 - **b**) For each eigenvalue λ of T, the multiplicity of λ equals $n \operatorname{rank}(T \lambda I)$.

INNER PRODUCT SPACES

- **68.** Let V be a vector space over \mathcal{F} . An **inner product** on V is a function that assigns, to every ordered pair of vectors x and y in V, a scalar \mathcal{F} , denoted $\langle x, y \rangle$, such that $\forall x, y, z \in V$ and all $c \in \mathcal{F}$, the following hold:
 - a) (x + z, y) = (x, y) + (z, y)
 b) (cx, y) = c (x, y)
 c) (x, y) = (y, x), where the over-bar denotes complex conjugation
 d) (x, x) > 0, if x ≠ 0
- **69.** Let $A \in \mathcal{M}_{m \times n}(\mathcal{F})$. We define the **conjugate transpose** or **adjoint** of A to be the $n \times m$ matrix A^* such that $(A^*)_{ii} = \overline{A_{ji}}$, for all i, j.

LINEAR ALGEBRA

INNER PRODUCT SPACES

- 70. Let V be an inner product space. For $x \in V$, we define the norm or length of x by $||x|| = \sqrt{\langle x, x \rangle}$.
- **71.** Let V be an inner product space. Vectors $x, y \in V$ are **orthogonal (perpendicular)** if $\langle x, y \rangle = 0$. A subset S of V is **orthogonal** if any two distinct vectors in S are orthogonal. A vector $x \in V$ is a **unit vector** if ||x|| = 1. Finally, a subset S of V is **orthonormal** if S is orthogonal and consists entirely of unit vectors.
- **72.** The process of multiplying a nonzero vector by the reciprocal of its length, or norm, is called **normalizing**.
- **73.** Let V be an inner product space. A subset of V is an **orthonormal basis** for V if it an ordered basis that is orthonormal.
- 74. The Gram-Schmidt Process: Let V be an inner product space and $S = \{w_1, w_2, ..., w_n\}$ be a linearly independent subset of V. Define $S' = \{v_1, v_2, ..., v_n\}$, where $v_1 = w_1$, and

$$v_k = w_k - \sum_{j=1}^{k-1} \frac{\langle w_k, v_j \rangle}{\|v_j\|^2} v_j$$
, for $2 \le k \le n$. Then S' is an orthogonal set of nonzero vectors such

that $\operatorname{span}(S') = \operatorname{span}(S)$.

- **75.** Let β be an orthonormal subset (possibly infinite) of an inner product space V, and let $x \in V$. The Fourier coefficients of x relative to β are the scalars $\langle x, y \rangle$, where $y \in \beta$.
- **76.** Let *S* be a nonempty subset of an inner product space *V*. We define S^{\perp} , or "*S* perp", to be the set of all vectors in *V* that are orthogonal to every vector in *S*; that is, $S^{\perp} = \{x \in V : \langle x, y \rangle = 0 \text{ for all } y \in S\}$. The set S^{\perp} is called the **orthogonal complement** of *S*.
- 77. Let V be an inner product space, and let T be a linear operator on V. We say that T is **normal** if $TT^* = T^*T$.
- **78.** Let T be a linear operator on an inner product space V. We say that T is self-adjoint (Hermitian) if $T = T^*$.
- 79. Let T be a linear operator on a finite-dimensional inner product space V over \mathcal{F} . If ||T(x)|| = ||x|| for all $x \in V$, we call T a **unitary operator** if $\mathcal{F} = \mathbb{C}$ and an **orthogonal operator** if $\mathcal{F} = \mathbb{R}$. In the infinite-dimensional case, it is generally called an **isometry**.
- **80.** A square matrix A is called an **orthogonal matrix** if $A^T A = AA^T = I$ and unitary if $A^*A = AA^* = I$.
- **81.** Let V be a real inner product space. A function $f: V \to V$ is called a **rigid motion** if ||f(x) f(y)|| = ||x y|| for all $x, y \in V$.

LINEAR ALGEBRA

INNER PRODUCT SPACES

- 82. Let V be an inner product space, and let $T: V \to V$ be a projection. We say that T is an orthogonal projection if $\mathcal{R}(T)^{\perp} = \mathcal{N}(T)$ and $\mathcal{N}(T)^{\perp} = \mathcal{R}(T)$.
- 83. The Spectral Theorem: Suppose that T is a linear operator on a finite-dimensional inner product space V over \mathcal{F} with the distinct eigenvalues $\lambda_1, \lambda_2, ..., \lambda_k$. Assume that T is normal if $\mathcal{F} = \mathbb{C}$ and that T is self-adjoint if $\mathcal{F} = \mathbb{R}$. For each $i, 1 \le i \le k$, let W_i be the eigenspace of T corresponding to the eigenvalue λ_i , and let T_i be the orthogonal projection of V on W_i . Then the following statements are true:
 - **a)** $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$,

b) If W_i denotes the direct sum of the subspaces W_j for $j \neq i$, then $W_i^{\perp} = W_i'$,

c) $T_i T_j = \delta_{ij} T_i$, for $1 \le i, j \le k$,

1)
$$I = T_1 + T_2 + \dots + T_k$$
,

e)
$$T = \lambda_1 T_1 + \lambda_2 T_2 + \dots + \lambda_k T_k$$

84. The set $\{\lambda_1, \lambda_2, ..., \lambda_k\}$ of eigenvalues of T is called the **spectrum** of T.

85. The sum $I = T_1 + T_2 + \dots + T_k$ from 83. (d) is called the resolution of the identity operator induced by T.

86. The sum $T = \lambda_1 T_1 + \lambda_2 T_2 + \dots + \lambda_k T_k$ from **83. (e)** is called the **spectral decomposition** of T. CANONICAL FORMS

- 87. Let T be a linear operator on a vector space V and let λ be a scalar. A nonzero vector x in V is called a generalized eigenvector of T corresponding to λ if $(T \lambda I)^{p}(x) = 0$, for some positive integer p.
- 88. Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. The generalized eigenspace of T corresponding to λ , denoted, K_{λ} , is the subset of V defined by $K_{\lambda} = \{x \in V : (T \lambda I)^{p}(x) = 0, \text{ for some positive integer } p\}$.
- **89.** Let T be a linear operator on a vector space V, and let x be a generalized eigenvector of T corresponding to the eigenvalue λ . Suppose that p is the smallest positive integer for which

 $(T - \lambda I)^{p}(x) = 0$. Then the ordered set $\{(T - \lambda I)^{p-1}(x), (T - \lambda I)^{p-2}(x), ..., (T - \lambda I)(x), x\}$ is called a **cycle of generalized eigenvectors** of *T* corresponding to λ . The vectors $(T - \lambda I)^{p-1}(x)$ and *x* are called the **initial vector** and the **end vector** of the cycle, respectively. We say that the **length of the cycle** is *p*.

LINEAR ALGEBRA

CANONICAL FORMS

90. Let T be a linear operator on a finite-dimensional vector space V, and suppose the characteristic polynomial of T splits, and let β be the union of ordered bases of generalized

eigenspaces of V, such that
$$[T]_{\beta} = \begin{pmatrix} A_1 & O & \cdots & O \\ O & A_2 & \cdots & O \\ \vdots & \vdots & & \vdots \\ O & O & \cdots & A_k \end{pmatrix}$$
, where each O is a zero matrix, and
each A_i is a square matrix of the form (λ) or $\begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & 1 \\ 0 & 0 & 0 & \cdots & 0 & \lambda \end{pmatrix}$ for some eigenvalue

 λ of T. Such a matrix A_i is called a **Jordan block** corresponding to λ , and the matrix $[T]_{\beta}$ is called a **Jordan canonical form** of T. We also say that the ordered basis β is a **Jordan canonical basis** for T.

91. Let $A \in \mathcal{M}_{n \times n}(\mathcal{F})$ be such that the characteristic polynomial of A (and hence L_A) splits. Then the **Jordan canonical form** of A is defined to be the Jordan canonical form of the linear operator L_A on \mathcal{F}^n . Example:

Let $A = \begin{pmatrix} 3 & 1 & -2 \\ -1 & 0 & 5 \\ -1 & -1 & 4 \end{pmatrix} \in \mathcal{M}_{3\times 3}(\mathbb{R})$, to find the Jordan canonical form for A, we need to find

a Jordan canonical basis for $T = L_A$. The characteristic polynomial of A is $f(t) = \det(A - tI) = -(t - 3)(t - 2)^2$. Hence $\lambda_1 = 3$ and $\lambda_2 = 2$ are eigenvalues of A with multiplicities 1 and 2, respectively. Then $\dim(K_{\lambda_1}) = 1$, and $\dim(K_{\lambda_2}) = 2$. Then $K_{\lambda_1} = \mathcal{N}(T - 3I)$, and $K_{\lambda_2} = \mathcal{N}((T - 2I)^2)$. Since $E_{\lambda_1} = \mathcal{N}(T - 3I)$, we have $E_{\lambda_1} = K_{\lambda_1}$. Observe that (-1, 2, 1) is an eigenvector of T corresponding to $\lambda_1 = 3$; therefore [(-1)]

$$\beta_1 = \left\{ \left| \begin{array}{c} 2\\ 1 \end{array} \right\} \right\}$$
 is a basis for K_{λ_1} . Since dim $\left(K_{\lambda_2} \right) = 2$ and a generalized eigenspace has a

basis consisting of a union of cycles, this basis is either a union of two cycles of length 1, or a single cycle of length 2. **Continued on next page...**

LINEAR ALGEBRA

CANONICAL FORMS

91. ... Continued. The former case (union of two cycles of length 1) is impossible because the vectors in the basis would be eigenvectors—contradicting the face that dim $(E_{\lambda_2}) = 1$. Therefore the desired basis is a single cycle of length 2. A vector v is the end vector of such ((1)(-1))

a cycle if and only if
$$(A - 2I)v \neq 0$$
, but $(A - 2I)^2 v = 0$. Then $\left\{ \begin{vmatrix} -3 \\ -1 \end{vmatrix}, \begin{vmatrix} 2 \\ 0 \end{vmatrix} \right\}$ is a basis for

the solution space of the homogenous system $(A - 2I)^2 x = 0$. Now choose a vector v in this set so that $(A - 2I)v \neq 0$. The vector v = (-1, 2, 0) is an acceptable candidate. Since (A-2I)v = (1,-3,-1), we obtain the cycle of generalized eigenvectors

$$\beta_2 = \left\{ (A - 2I)v, v \right\} = \left\{ \begin{pmatrix} 1 \\ -3 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} \right\} \text{ as a basis for } K_{\lambda_2}. \text{ Finally, we can take the union of}$$

these two bases to obtain $\beta = \beta_1 \cup \beta_2 = \begin{cases} \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -3 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} \end{cases}$, which is a Jordan canonical basis for *A*. Therefore, $J = \begin{bmatrix} T \end{bmatrix}_{\beta} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$ is a Jordan canonical form for *A*. Notice that

A is similar to J; in fact, $J = Q^{-1}AQ$, where Q is the matrix whose columns are the vectors in β .

92. Each generalized eigenspace K_{λ_i} contains an ordered basis β_i consisting of a union of disjoint cycles of generalized eigenvectors corresponding to λ_i . So the union $\beta = \bigcup_{i=1}^{n} \beta_i$ is a Jordan canonical basis for T. For each i, let T_i be the restriction of T to K_{λ_i} , and let

$$A_{i} = [T_{i}]_{\beta_{i}}$$
. Then A_{i} is the Jordan canonical form of T_{i} , and $J = [T]_{\beta} = \begin{pmatrix} A_{1} & O & \cdots & O \\ O & A_{2} & \cdots & O \\ \vdots & \vdots & & \vdots \\ O & O & \cdots & A_{k} \end{pmatrix}$

is the Jordan canonical form of T.

LINEAR ALGEBRA

CANONICAL FORMS

- **93.** To help visualize each of the matrices A_i in a Jordan canonical form, and ordered bases β_i , we use an array of dots called a **dot diagram** of T_i , where T_i is the restriction of T to K_{λ_i} . Suppose that β_i is a disjoint union of cycles of generalized eigenvectors $\gamma_1, \gamma_2, ..., \gamma_{n_i}$ with lengths $p_1 \ge p_2 \ge ... \ge p_{n_i}$, respectively. The dot diagram of T_i contains one dot for each vector in β_i , and the dots are configured according to the following rules:
 - **a)** The array consists of n_i columns (one column for each cycle).
 - **b)** Counting from left to right, the *j* th column consists of the p_j dots that correspond to the vectors of γ_j starting with the initial vector at the top and continuing down to the end vector.

Denote the end vectors of the cycles by $v_1, v_2, ..., v_n$. Example:

$$\bullet (T - \lambda_{i}I)^{p_{1}-1}(v_{1}) \bullet (T - \lambda_{i}I)^{p_{1}-1}(v_{2}) \cdots \bullet (T - \lambda_{i}I)^{p_{n_{i}}-1}(v_{n_{i}}) \\ \bullet (T - \lambda_{i}I)^{p_{1}-2}(v_{1}) \bullet (T - \lambda_{i}I)^{p_{1}-2}(v_{2}) \cdots \bullet (T - \lambda_{i}I)^{p_{n_{i}}-2}(v_{n_{i}}) \\ \vdots & \vdots & \vdots & \vdots \\ \vdots & & \vdots & & \vdots \\ \vdots & & & \bullet (T - \lambda_{i}I)(v_{2}) & \bullet (T - \lambda_{i}I)(v_{n_{i}}) \\ \bullet (T - \lambda_{i}I)(v_{1}) & \bullet v_{2} & \bullet v_{n_{i}} \end{array}$$

- **94.** A linear operator T on a vector space V, $[n \times n \text{ matrix } A]$, is called **nilpotent** if $T^p = T_0$, $[A^p = O]$, for come positive integer p.
- **95.** Let *T* be a linear operator on a finite-dimensional vector space. A polynomial p(t) is called the **minimal polynomial** of *T* if p(t) is a monic (leading coefficient is 1) polynomial of least positive degree for which $p(T) = T_0$. It follows for $A \in \mathcal{M}_{n \times n}(\mathcal{F})$, if p(t) is a monic polynomial of least positive degree for which p(A) = O.