

Cost-Volume-Profit Relationships

M. En C. Eduardo Bustos Farías

Assumptions of CVP Analysis

(1) Selling price is constant.
(2) Costs are linear.

3 In multi-product companies, the sales mix is constant.
4 In manufacturing companies, inventories do not change (units produced $=$ units sold).

Cost-Volume-Profit Assumptions and Terminology

1. Changes in the level of revenues and costs arise only because of changes in the number of product (or service) units produced and sold.
2. Total costs can be divided into a fixed component and a component that is variable with respect to the level of output.

Cost-Volume-Profit Assumptions and Terminology
3. When graphed, the behavior of total revenues and total costs is linear (straight-line) in relation to output units within the relevant range (and time period).
4. The unit selling price, unit variable costs, and fixed costs are known and constant.

Cost-Volume-Profit Assumptions and Terminology

5. The analysis either covers a single product or assumes that the sales mix when multiple products are sold will remain constant as the level of total units sold changes.
6. All revenues and costs can be added and compared without taking into account the time value of money.

Cost-Volume-Profit Assumptions and Terminology

Operating income
= Total revenues from operations

- Cost of goods sold and operating costs (excluding income taxes)

Net income $=$ Operating income - Income taxes

Essentials of Cost-Volume-Profit (CVP) Analysis Example

Assume that the Pants Shop can purchase pants for \$32 from a local factory; other variable costs amount to \$10 per unit.
The local factory allows the Pants Shop to return all unsold pants and receive a full $\$ 32$ refund per pair of pants within one year. The average selling price per pair of pants is $\$ 70$ and total fixed costs amount to $\$ 84,000$.

Essentials of Cost-Volume-Profit (CVP) Analysis Example

How much revenue will the business receive if 2,500 units are sold?

$$
2,500 \times \$ 70=\$ 175,000
$$

How much variable costs will the business incur?

$$
2,500 \times \$ 42=\$ 105,000
$$

$$
\$ 175,000-105,000-84,000=(\$ 14,000)
$$

Essentials of Cost-Volume-Profit (CVP) Analysis Example

What is the contribution margin per unit?

$\$ 70-\$ 42$ = \$28 contribution margin per unit
What is the total contribution margin when 2,500 pairs of pants are sold? 2,500 \times \$28 = \$70,000

Essentials of Cost-Volume-Profit (CVP) Analysis Example

Contribution margin percentage (contribution margin ratio) is the contribution margin per unit divided by the selling price.
What is the contribution margin percentage?

$$
\$ 28 \div \$ 70=40 \%
$$

Essentials of Cost-Volume-Profit (CVP) Analysis Example

If the business sells 3,000 pairs of pants, revenues will be $\$ 210,000$ and contribution margin would equal $40 \% \times \$ 210,000=\$ 84,000$.

PELÍCULA

The Basics of Cost-Volume-

 Profit (CVP) Analysis| | CLE CO.
 me Statem h of June | |
| :---: | :---: | :---: |
| | Total | Per Unit |
| Sales (500 bikes) | \$ 250,000 | \$ 500 |
| Less: variable expenses | 150,000 | 300 |
| Contribution margin | 100,000 | \$ 200 |
| Less: fixed expenses | 80,000 | |
| Net operating income | \$ 20,000 | |

Contribution Margin (CM) is the amount remaining from sales revenue after variable expenses have been deducted.

The Basics of Cost-VolumeProfit (CVP) Analysis

| WIND BICYCLE CO. |
| :--- | :--- | :--- | :--- |
| Contribution Income Statement |
| For the Month of June |

The Basics of Cost-VolumeProfit (CVP) Analysis

WIND BICYCLE CO. Contribution Income Statement For the Month of June		
	Total	Per Unit
Sales (500 bikes)	\$ 250,000	\$ 500
Less: variable expenses	150,000	300
Contribution margin	100,000	\$ 200
Less: fixed expenses	80,000	
Net operating income	\$ 20,000	

After covering fixed costs, any remaining CM contributes to income.

The Contribution Approach

For each additional unit Wind sells, \$200 more in contribution margin will helpto cover fixed expenses and profit.

	Total	Per Unit	
Sales (500 bikes)	\$250,000	\$	500
Less: variable expenses	150,000		300
Contribution margin	\$100,000	\$	200
Less: fixed expenses	80,000		
Net operating income	\$ 20,000		

The Contribution Approach

Each month Wind must generate at least $\$ 80,000$ in total CM to break even.

Cubrir gastos

	Total	Per Unit	
Sales (500 bikes)	\$250,000	\$	500
Less: variable expenses	S 150,000		300
Contribution margin	\$100,000	\$	200
Less: fixed expenses	80,000		
Net operating income	\$ 20,000		

The Contribution Approach enfoque

If Wind sells 400 units in a month, it will be operating at the break-even point. WIND BICYCLE CO.

The Contribution Approach

If Wind sells one more bike (401 bikes), net operating income will increase by $\$ 200$.

CVP Relationships in Graphic Form

Viewing CVP relationships in a graph is often helpful. Consider the following information for Wind Co.:

Sales

Income 300 units		Income 400 units		Income 500 units	
\$	150,000	\$	200,000		250,000
	90,000		120,000		150,000
\$	60,000	\$	80,000		100,000
	80,000		80,000		80,000
\$	$(20,000)$	\$	-		20,000

CVP Graph

CVP Graph

Contribution Margin Ratio

The contribution margin ratio is:

$$
\text { CM Ratio }=\frac{\text { Total CM }}{\text { Total sales }} \leftarrow^{\text {Coneribution Margin (CM) }}
$$

For Wind Bicycle Co. the ratio is:

$$
\frac{\$ 80,000}{\$ 200,000}=40 \%
$$

Contribution Margin Ratio

Or, in terms of units, the contribution margin ratio is:
CM Ratio $=\frac{\text { Unit CM }}{\text { Unit selling price }}$
For Wind Bicycle Co. the ratio is:

$$
\frac{\$ 200}{\$ 500}=40 \%
$$

Contribution Margin Ratio

At Wind, each \$1.00 increase in sales revenue results in a total contribution margin increase of 40¢.

If sales increase by $\$ 50,000$, what will be the increase in total contribution margin?

Contribution Margin Ratio

Sales
Less: variable expenses
Contribution margin
Less: fixed expenses
Net operating income

A \$50,000 increase in sales revenue

Contribution Margin Ratio

Sales
Less: variable expenses
Contribution margin
Less: fixed expenses
Net operating income

400 Bikes	500 Bikes
	$\$ 200,000$
250,000	

Quick Check \checkmark

Coffee Klatch is an espresso stand in a downtown office building. The average selling price of a cup of coffee is $\$ 1.49$ and the average variable expense per cup is $\$ 0.36$. The average fixed expense per month is $\$ 1,300$. 2,100 cups are sold each month on average. What is the CM Ratio for Coffee Klatch?
a. 1.319
b. 0.758
c. 0.242
d. 4.139

Quick Check \checkmark

Coffee Klatch is an espresso stand in a downtown office building. The average selling price of a cup of coffee is $\$ 1.49$ and the average variable expense per cup is $\$ 0.36$. The average fixed expense per month is $\$ 1,300$.
2,100 cups are cold each month nn averane What is the CM Ratio $=\underline{\text { Unit contribution margin }}$ Unit selling price a. 1.319
b. 0.758
c. 0.242
d. 4.139

$$
\begin{aligned}
& =\frac{(\$ 1.49-\$ 0.36)}{\$ 1.49} \\
& =\frac{\$ 1.13}{\$ 1.49}=0.758
\end{aligned}
$$

Changes in Fixed Costs and Sales Volume

Wind is currently selling 500 bikes per month. The company's sales manager believes that an increase of \$10,000 in the monthly advertising budget would increase bike sales to 540 units.

Should we authorize the requested increase in the advertising budget?

Changes in Fixed Costs and Sales Volume

$\$ 80,000+\$ 10,000$ advertising $=\$ 90,000$

Sales
Less: variable expenses

Current Sales (500 bikes)	Projected Sales (540 bikes)
\$ 250,000	270,000
150,000	162,000
100,000	108,000
80,000	90,000
\$ 20,000	\$ 18,000

Sales increased by $\$ 20,000$, but net operating income decreased by $\$ 2,000$.

Changes in Fixed Costs and Sales Volume

The Shortcut Solution

atajo

Increase in CM (40 units X \$200) \$ 8,000
Increase in advertising expenses 10,000
Decrease in net operating income $\$ \quad(2,000)$

The answer in no.

Break-Even Analysis

Break-even analysis can be approached in three ways:

1. Graphical analysis.
2. Equation method.
3. Contribution margin method.

Graph Method

Equation Method

Profits = Sales - (Variable expenses + Fixed expenses)

 ORSales = Variable expenses + Fixed expenses + Profits

At the break-even point profits equal zero.

Break-Even Analysis

Here is the information from Wind Bicycle Co.:

	Total	Per Unit		Percent
Sales (500 bikes)	\$250,000	\$	500	100\%
Less: variable expenses	150,000		300	60\%
Contribution margin	\$100,000	\$	200	40\%
Less: fixed expenses	80,000			
Net operating income	\$ 20,000			

Equation Method

We calculate the break-even point as follows:
Sales $=$ Variable expenses + Fixed expenses + Profits

$$
\$ 500 \mathrm{Q}=\$ 300 \mathrm{Q}+\$ 80,000+\$ 0
$$

Where:
$\mathrm{Q}=$ Number of bikes sold $\$ 500=$ Unit selling price
\$300 = Unit variable expense \$80,000 = Total fixed expense

Equation Method

We calculate the break-even point as follows:
Sales $=$ Variable expenses + Fixed expenses + Profits

$$
\begin{aligned}
\$ 500 Q & =\$ 300 Q+\$ 80,000+\$ 0 \\
\$ 200 Q & =\$ 80,000 \\
Q & =\$ 80,000 \div \$ 200 \text { per bike } \\
Q & =400 \text { bikes }
\end{aligned}
$$

Equation Method

We can also use the following equation to compute the break-even point in sales dollars.

Sales = Variable expenses + Fixed expenses + Profits

$$
X=0.60 X+\$ 80,000+\$ 0
$$

Where:
X = Total sales dollars
0.60 = Variable expenses as a \% of sales \$80,000 = Total fixed expenses

Equation Method

We can also use the following equation to compute the break-even point in sales dollars.

Sales $=$ Variable expenses + Fixed expenses + Profits

$$
\begin{aligned}
X & =0.60 X+\$ 80,000+\$ 0 \\
0.40 X & =\$ 80,000 \\
X & =\$ 80,000 \div 0.40 \\
X & =\$ 200,000
\end{aligned}
$$

Contribution Margin Method

The contribution margin method is a variation of the equation method.

Break-even point in units sold
$\begin{gathered}\text { Break-even point in } \\ \text { total sales dollars }\end{gathered}=\frac{\text { Fixed expenses }}{\mathrm{CM} \text { ratio }}$

PELÍCULA

Quick Check \checkmark

Coffee Klatch is an espresso stand in a downtown office building. The average selling price of a cup of coffee is $\$ 1.49$ and the average variable expense per cup is $\$ 0.36$. The average fixed expense per month is $\$ 1,300$. 2,100 cups are sold each month on average. What is the break-even sales in units?
a. 872 cups
b. 3,611 cups
c. 1,200 cups
d. 1,150 cups

Quick Check \checkmark

Coffee Klatch is an espresso stand in a downtown office building. The average selling price of a oun of noffon in dr in ond tho average \backslash Break-even $=\frac{\text { Fixed expenses }}{\text { Unit contribution margin }}$ average 2,100 cur

What

$=\frac{\$ 1,300}{\$ 1.49 \text { per cup }-\$ 0.36 \text { per cup }}$
\$1,300
$=\frac{\$ 1,300}{\$ 1.13 \text { per cup }}$
= 1,150 cups
d. 1,150 cups

Quick Check \checkmark

Coffee Klatch is an espresso stand in a downtown office building. The average selling price of a cup of coffee is $\$ 1.49$ and the average variable expense per cup is $\$ 0.36$. The average fixed expense per month is $\$ 1,300$. 2,100 cups are sold each month on average. What is the break-even sales in dollars?
a. \$1,300
b. $\$ 1,715$
c. $\$ 1,788$
d. $\$ 3,129$

Quick Check \checkmark

Coffee Klatch is an espresso stand in a downtown office building. The average selling price of a cup of coffee is $\$ 1.49$ and the average variable expense per cup is $\$ 0.36$. The average fixed expense per month is $\$ 1,300$. 2,100 cups are sold each month on average.

What is
a. $\$ 1,300$
b. $\$ 1,715$
c. \$1,788
d. $\$ 3,129$

Break-even sales $=\frac{\text { Fixed expenses }}{C M}$
CM Ratio

$$
\begin{aligned}
& =\frac{\$ 1,300}{0.758} \\
& =\$ 1,715
\end{aligned}
$$

Target Profit Analysis

Suppose Wind Co. wants to know how many bikes must be sold to earn a profit of $\$ 100,000$.

We can use our CVP formula to determine the sales volume needed to achieve a target net profit figure.

The CVP Equation

Sales = Variable expenses + Fixed expenses + Profits

$$
\begin{aligned}
\$ 500 Q & =\$ 300 Q+\$ 80,000+\$ 100,000 \\
\$ 200 Q & =\$ 180,000 \\
Q & =900 \text { bikes }
\end{aligned}
$$

The Contribution Margin Approach

We can determine the number of bikes that must be sold to earn a profit of $\$ 100,000$ using the contribution margin approach.

Unit sales to attain = Fixed expenses + Target profit the target profit Unit contribution margin

$\frac{\$ 80,000+\$ 100,000}{\$ 200 \text { per bike }}=900$ bikes

Quick Check \checkmark

Coffee Klatch is an espresso stand in a downtown office building. The average selling price of a cup of coffee is $\$ 1.49$ and the average variable expense per cup is $\$ 0.36$. The average fixed expense per month is $\$ 1,300$.

How many cups of coffee would have to be sold to attain target profits of $\$ 2,500$ per month? a. 3,363 cups
b. 2,212 cups
c. 1,150 cups
d. 4,200 cups

Quick Check \checkmark

Unit sales to = Fixed expenses + Target profit attain target profit $=$ Unit contribution margin

do
 pri
 av
 av

$=\frac{\$ 1,300+\$ 2,500}{\$ 1.49-\$ 0.36}$
$=\frac{\$ 3,800}{\$ 1.13}$
= 3,363 cups
so
a. 3,363 cups
b. 2,212 cups
c. 1,150 cups
d. 4,200 cups

The Margin of Safety

Excess of budgeted (or actual) sales over the break-even volume of sales. The amount by which sales can drop before losses begin to be incurred.

Margin of safety $=$ Total sales - Break-even sales

Let's calculate the margin of safety for Wind.

The Margin of Safety

Wind has a break-even point of $\$ 200,000$. If actual sales are $\$ 250,000$, the margin of safety is $\$ 50,000$ or 100 bikes.

Sales
Less: variable expenses
Contribution margin Less: fixed expenses Net operating income

Break-even sales 400 units	Actual sales 500 units	
\$ 200,000	\$	250,000
120,000		150,000
80,000		100,000
80,000		80,000
\$	\$	20,000

The Margin of Safety

The margin of safety can be expressed as
20% of sales.
$(\$ 50,000 \div \$ 250,000)$

Sales
Less: variable expenses
Contribution margin Less: fixed expenses Net operating income

Break-even sales 400 units		Actual sales 500 units	
\$	200,000		250,000
	120,000		150,000
	80,000		100,000
	80,000		80,000
\$	-	\$	20,000

Quick Check \checkmark

Coffee Klatch is an espresso stand in a downtown office building. The average selling price of a cup of coffee is $\$ 1.49$ and the average variable expense per cup is $\$ 0.36$. The average fixed expense per month is $\$ 1,300$. 2,100 cups are sold each month on average.

What is the margin of safety?
a. 3,250 cups
b. 950 cups
c. 1,150 cups
d. 2,100 cups

Quick Check \checkmark

Margin of safety $=$ Total sales - Break-even sales
do
$=2,100$ cups $-1,150$ cups
= 950 cups
av
av
2, $\underset{\text { Mercentage }}{\text { Margin of safety }}=\frac{950 \text { cups }}{2,100 \text { cups }}=45 \%$

a. $3,250 \mathrm{cups}$

b. 950 cups
c. $1,150 \mathrm{cups}$
d. 2,100 cups

Operating Leverage
 apalancamiento

* A measure of how sensitive net operating income is to percentage changes in sales.
- With high leverage, a small percentage increase in sales can produce a much larger percentage increase in net operating income.

Degree of operating leverage $=\frac{\text { Contribution margin }}{\text { Net operating income }}$

Operating Leverage

Sales

Less: variable expenses 150,000 Contribution margin 100,000
Less: fixed expenses 80,000 Net income

Actual sales	
500 Bikes	
$\$ \quad 250,000$	
	150,000
100,000	
	80,000
$\$ \quad 20,000$	

$\$ 100,000=5$ \$20,000

Operating Leverage

With a operating leverage of 5 , if Wind increases its sales by 10%, net operating income would increase by 50%.

Percent increase in sales Degree of operating leverage Percent increase in profits

Operating Leverage

Sales
Less variable expenses Contribution margin Less fixed expenses Net operating income

Actual sales (500)		Increased sales (550)	
\$	250,000	\$	275,000
	150,000		165,000
	100,000		110,000
	80,000		80,000
\$	20,000	\$	30,000

10% increase in sales from \$250,000 to \$275,000 . . .
. . . results in a 50% increase in income from $\$ 20,000$ to $\$ 30,000$.

Quick Check \checkmark

Coffee Klatch is an espresso stand in a downtown office building. The average selling price of a cup of coffee is $\$ 1.49$ and the average variable expense per cup is $\$ 0.36$. The average fixed expense per month is $\$ 1,300$. 2,100 cups are sold each month on average. What is the operating leverage?
a. 2.21
b. 0.45
c. 0.34
d. 2.92

Quick Check \checkmark

Coffee downtown		Actual sales 2,100 cups	
ce of a	Sales	\$	3,129
verage va	Less: Variable expenses		756
verage fix	Contribution margin		2,373
	Less: Fixed expenses		1,300
	Net operating income	\$	1,073

$\begin{aligned} & \text { Operating } \\ & \text { leverage }\end{aligned}=\frac{\text { Contribution margin }}{\text { Net operating income }}$

$$
=\frac{\$ 2,373}{\$ 1,073}=2.21
$$

Quick Check \checkmark

At Coffee Klatch the average selling price of a cup of coffee is $\$ 1.49$, the average variable expense per cup is $\$ 0.36$, and the average fixed expense per month is $\$ 1,300$. 2,100 cups are sold each month on average.

If sales increase by 20\%, by how much should net operating income increase?
a. 30.0\%
b. 20.0\%
c. 22.1%
d. 44.2%

Quick Check \checkmark

At Coffee Klatch the average selling price of a cup of coffee is $\$ 1.49$, the average variable expense per cup is $\$ 0.36$, and the average fixed expense per month is $\$ 1,300$. 2,100 cups are sold each month on average.

If sales increase by 20%, by how much should net operating income increase?
a. 30.0%
b. 20.0%
c. 22.1%
d. 44.2%

Percent increase in sales	20.0%
\times Degree of operating leverage	2.21
	44.20%

Teaching Note:
 Verify increase in profit

Sales	Actual sales	Increased sales
	2,100 cups	2,520 cups
	\$ 3,129	\$ 3,755
Less: Variable expenses	756	907
Contribution margin	2,373	2,848
Less: Fixed expenses	1,300	1,300
Net operating income	\$ 1,073	\$ 1,548
\% change in sales		20.0\%
\% change in net operating	income	44.2\%

The Concept of Sales Mix

- Sales mix is the relative proportions in which a company's products are sold.
- Different products have different selling prices, cost structures, and contribution margins.

Let's assume Wind sells bikes and carts and see how we deal with break-even analysis.

Multi-product break-even analysis

Wind Bicycle Co. provides the following information:

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Sales} \& \multicolumn{3}{|c|}{Bikes} \& \multicolumn{3}{|c|}{Carts} \& \multicolumn{3}{|c|}{Total} \\
\hline \& \$ \& 250,000 \& 100\% \& \$ \& 300,000 \& 100\% \& \$ \& 550,000 \& 100.0\% \\
\hline Var. exp. \& \& 150,000 \& 60\% \& \& 135,000 \& 45\% \& \& 285,000 \& 51.8\% \\
\hline Contrib. margin \& \$ \& 100,000 \& 40\% \& \$ \& 165,000 \& 55\% \& \& 265,000 \& 48.2\% \\
\hline \begin{tabular}{l}
Fixed exp. \\
Net operating i
\end{tabular} \& \& \& \& \& \& \& \$ \& \[
\begin{array}{r}
170,000 \\
\hline 95,000
\end{array}
\] \& \\
\hline Sales mix \& \$ \& 250,000 \& 45\% \& \$ \& 300,000 \& 55\% \& \$ \& 95,000

550,000 \& $$
100.0 \%
$$

\hline \& \& \& \& \& $$
\frac{\$ 265,00}{\$ 550,0}
$$ \& \[

=
\] \& \& \% (rou \& nded)

\hline
\end{tabular}

Multi-product break-even analysis

	$\begin{aligned} \text { Break-even sales } & =\frac{\text { Fixed expenses }}{\text { CM Ratio }} \\ & =\frac{\$ 170,000}{0.482} \\ & =\$ 352,697 \end{aligned}$						
	Bikes		Carts		Total		
Sales	\$ 158,714	100\%	\$ 193,983	100\%	\$	352,697	100.0\%
Var. exp.	95,228	60\%	87,293	45\%		182,521	51.8\%
Contrib. margin	\$ 63,485	40\%	\$ 106,691	55\%		170,176	48.2\%
Fixed exp.						170,000	
Net operating in		Roundi	error	-		176	

Sales mix $\quad \$ 158,714 \quad 45 \% \quad \$ 193,983 \quad 55 \% \quad \$ 352,697 \quad 100.0 \%$

Explain CVP analysis

 in decision making and how sensitivity analysis helps managers cope with uncertainty.
Using CVP Analysis Example

Suppose the management anticipates selling 3,200 pairs of pants.
Management is considering an advertising campaign that would cost $\$ 10,000$.
It is anticipated that the advertising will increase sales to 4,000 units.

Should the business advertise?

Using CVP Analysis Example

3,200 pairs of pants sold with no advertising:

Contribution margin Fixed costs
Operating income 4,000 pairs of pants sold with advertising:
Contribution margin
\$112,000
Fixed costs
Operating income
\$89,600
84,000
\$ 5,600

Using CVP Analysis Example

Instead of advertising, management is considering reducing the selling price to $\$ 61$ per pair of pants.
It is anticipated that this will increase sales to 4,500 units.
Should management decrease the selling price per pair of pants to $\$ 61$?

Using CVP Analysis Example

3,200 pairs of pants sold with no change in the selling price:
Operating income $=\$ 5,600$
4,500 pairs of pants sold at a reduced selling price:
Contribution margin: $(4,500 \times \$ 19)$
Fixed costs
\$85,500
84,000
Operating income
\$ 1,500

Sensitivity Analysis and Uncertainty Example

Assume that the Pants Shop can sell 4,000 pairs of pants.
Fixed costs are $\$ 84,000$.
Contribution margin ratio is 40%.
At the present time the business cannot handle more than 3,500 pairs of pants.

Sensitivity Analysis and Uncertainty Example

To satisfy a demand for 4,000 pairs, management must acquire additional space for $\$ 6,000$.
Should the additional space be acquired?
Revenues at breakeven with existing space are $\$ 84,000 \div .40=\$ 210,000$.
Revenues at breakeven with additional space are

$$
\$ 90,000 \div .40=\$ 225,000
$$

Sensitivity Analysis and Uncertainty Example

Operating income at $\$ 245,000$ revenues with existing space $=(\$ 245,000 \times .40)$
$-\$ 84,000=\$ 14,000$.
$(3,500$ pairs of pants $\times \$ 28)-\$ 84,000=\$ 14,000$

Sensitivity Analysis and Uncertainty Example

Operating income at $\$ 280,000$ revenues with additional space $=(\$ 280,000 \times .40)-\$ 90,000$ $=\$ 22,000$.
(4,000 pairs of pants $\times \$ 28$ contribution margin) $-\$ 90,000=\$ 22,000$

