

M. En C. Eduardo Bustos Farías

Time Value of Money

- Business investments extend over long periods of time, so we must recognize the time value of money.
- Investments that promise returns earlier in time are preferable to those that promise returns later in time.

Time Value of Money

A dollar today is worth more than a dollar a year from now since a dollar received today can be invested, yielding more than a dollar a year from now.

If \$100 is invested today at 8% interest, how much will you have in two years? At the end of one year: $100 + 0.08 \times 100 = (1.08) \times 100 = 108$ At the end of two years: $(1.08) \times 108 = 116.64$

 $(1.08)2 \times \$100 = \116.64

If P dollars are invested today at the annual interest rate r, then in n years you would have F_n dollars computed as follows:

$FV = PV (1 + r)^{n}$

The Time Value of Money

Compounding and capitalizar Discounting Single Sums descontar

We know that receiving \$1 today is worth aun *more* than \$1 in the future. This is due to opportunity costs.

The opportunity cost of receiving \$1 in the future is the <u>interest</u> we could have earned if we had received the \$1 sooner.

Today

Future

• Translate \$1 today into its equivalent in the future (compounding).

• Translate \$1 today into its equivalent in the future (compounding).

• Translate \$1 today into its equivalent in the future (compounding).

• Translate \$1 in the future into its equivalent today (*discounting*). descontar

• Translate \$1 today into its equivalent in the future (compounding).

• Translate \$1 in the future into its equivalent today (*discounting*).

Future Value

 Today
 Future

 The UNITED STATES OF AMERICA
 ?

 ONE DOLLAR
 ?

Future Value: Time Value of Money

Assume the investment is \$1,000. The interest rate is 8%. What is the future value if the money is invested for one year? Two? Three? Today

Future Value: Time Value of Money

- F = \$1,000(1.08) = \$1,080.00 (after one year)
- $F = $1,000(1.08)^2 = $1,166.40$ (after two years)
- $F = $1,000(1.08)^3 = $1,259.71$ (after three years)

If you deposit \$100 in an account earning 6%, how much would you have in the account after 1 year?

If you deposit \$100 in an account earning 6%, how much would you have in the account after 1 year?

If you deposit \$100 in an account earning 6%, how much would you have in the account after 1 year?

If you deposit \$100 in an account earning 6%, how much would you have in the account after 5 years?

If you deposit \$100 in an account earning 6%, how much would you have in the account after 5 years?

If you deposit \$100 in an account earning 6%, how much would you have in the account after 5 years?

If you deposit \$100 in an account earning 6% with quarterly compounding, how much would you have capitalización in the account after 5 years?

If you deposit \$100 in an account earning 6% with quarterly compounding, how much would you have in the account after 5 years? $\mathbf{PV} = \begin{bmatrix} \mathbf{PV} = \mathbf{PV} \end{bmatrix}$

If you deposit \$100 in an account earning 6% with quarterly compounding, how much would you have

in the account after 5 years?

Mathematical Solution: $FV = PV (1 + i/m)^{m \times n}$

 $FV = 100 (1.015)^{20} = \134.68

If you deposit \$100 in an account earning 6% with monthly compounding, how much would you have in the account after 5 years?

If you deposit \$100 in an account earning 6% with monthly compounding, how much would you have in the account after 5 years?

If you deposit \$100 in an account earning 6% with monthly compounding, how much would you have in the account after 5 years?

 $FV = PV (1 + i/m)^{m \times n}$ FV = 100 (1.005)⁶⁰ = \$134.89

Future Value - continuous compounding What is the FV of \$1,000 earning 8% with **continuous compounding**, after 100 years?

Future Value - continuous compounding What is the FV of \$1,000 earning 8% with continuous compounding, after 100 years?

 $FV = 1000 (e^{.08x100}) = 1000 (e^{.8})$

FV = \$2,980,957.99

Present Value

The present value of any sum to be received in the future can be computed by turning the interest formula around and solving for P:

A bond will pay \$100 in two years. What is the present value of the \$100 if an investor can earn a return of 12% on investments?

$$P = 100 \left[\frac{1}{(1 + .12)^2} \right]$$

P = \$100 (0.797) P = \$79.70

A bond will pay \$100 in two years. What is the present value of the \$100 if an investor can earn a return of 12% on investments?

Present Value = \$79.70

What does this mean? If \$79.70 is put in the bank today, it will be worth \$100 in two years. In that sense, \$79.70 today is equivalent to \$100 in two years.

Let's verify that if we put \$79.70 in the bank today at 12% interest that it would grow to \$100 at the end of two years.

	Year 1	Year 2
Beginning balance	\$ 79.70	-\$ 89.26
Interest @ 12%	\$ 9.56	\$ 10.71
Ending balance	\$ 89.26-	\$ 99.97

We can also determine the present value using present value tables.

Time Value of Money

Present value tables

	Rate			
Periods	10%	12%	14%	
1	0.909	0.893	0.877	
2	0.826	0.797	0.769	
3	0.751	0.712	0.675	
4	0.683	0.636	0.592	
5	0.621	0.567	0.519	

Time Value of Money

\$100 × 0.797 = \$79.70 present value

	Rate				
Periods	10%	12%	14%		
1	0.909	0.893	0.877		
2	0.826	0.797	0.769		
3	0.751	0.712	0.675		
4	0.683	0.636	0.592		
5	0.621	0.567	0.519		

Present value factor of \$1 for 2 periods at 12%.

How much would you have to put in the bank today to have \$100 at the end of five years if the interest rate is 10%?

- a. \$62.10
- b. \$56.70
- c. \$90.90
- d. \$51.90

Quick Check ✓

How much would you have to put in the bank today to have \$100 at the end of five years if the interest

rate is 10% ? $$100 \times 0.621 = 62.10						
a.\$62.10 b.\$56.70		400/	Rate			
0. 000.70	Periods 1	<u> 10% </u>	<u> 12% </u> 0.893	<u> </u>		
c. \$90.90	2	0.826	0.797	0.769		
d. \$51.90	3 4	0.751 0.683	0.712 0.636	0.675 0.592		
	5	0.621	0.567	0.519		

If you receive \$100 one year from now, what is the PV of that \$100 if your opportunity cost is 6%?

If you receive \$100 one year from now, what is the PV of that \$100 if your opportunity cost is 6%?

If you receive \$100 one year from now, what is the PV of that \$100 if your opportunity cost is 6%?

 Mathematical Solution:

 $PV = FV / (1 + i)^n$
 $PV = 100 / (1.06)^1 = 94.34

If you receive \$100 five years from now, what is the PV of that \$100 if your opportunity cost is 6%?

If you receive \$100 five years from now, what is the PV of that \$100 if your opportunity cost is 6%?

If you receive \$100 five years from now, what is the PV of that \$100 if your opportunity cost is 6%?

 Mathematical Solution:

 $PV = FV / (1 + i)^n$
 $PV = 100 / (1.06)^5 = 74.73

What is the PV of \$1,000 to be received 15 years from now if your opportunity cost is 7%?

If you sold land for \$11,933 that you bought 5 years ago for \$5,000, what is your annual rate of return?

If you sold land for \$11,933 that you bought 5 years ago for \$5,000, what is your annual rate of return?

If you sold land for \$11,933 that you bought 5 years ago for \$5,000, what is your annual rate of return?

```
Mathematical Solution:
PV = FV / (1 + i)^n
5,000 = 11,933 / (1+i)^5
.419 = ((1/(1+i)^5))
2.3866 = (1+i)^5
(2.3866)^{1/5} = (1+i)
                           i = .19
```


Suppose you placed \$100 in an account that pays 9.6% interest, compounded monthly. How long will it take for your account to grow to \$500?

Hint for single sum problems:

- In every single sum future value and present value problem, there are 4 variables:
- FV, PV, i, and n
- When doing problems, you will be given 3 of these variables and asked to solve for the 4th variable.
- Keeping this in mind makes "time value" problems much easier!

The Time Value of Money

Compounding and Discounting descontar

Time Value of Money

An investment that involves a series of identical cash flows at the end of each year is called an **annuity**.

Annuity: a sequence of equal cash flows, occurring at the end of each period.

Examples of Annuities:

- If you buy a bond, you will receive equal semi-annual coupon interest payments over the life of the bond.
- If you borrow money to buy a Pides prestado house or a car, you will pay a stream of equal payments. flujo

Examples of Annuities:

- If you buy a bond, you will receive equal semi-annual coupon interest payments over the life of the bond.
- If you borrow money to buy a house or a car, you will pay a stream of equal payments.

If you invest \$1,000 each year at 8%, how much would you have after 3 years?

If you invest \$1,000 each year at 8%, how much would you have after 3 years?

If you invest \$1,000 each year at 8%, how much would you have after 3 years?

Mathematical Solution:

If you invest \$1,000 each year at 8%, how much would you have after 3 years?

Mathematical Solution:

 $FV = PMT (FVIFA_{i,n})$

If you invest \$1,000 each year at 8%, how much would you have after 3 years?

Mathematical Solution: $FV = PMT (FVIFA_{i,n})$ $FV = 1,000 (FVIFA_{.08,3})$ (use table, or)

If you invest \$1,000 each year at 8%, how much would you have after 3 years?

Mathematical Solution:FV = PMT (FVIFA $_{i,n}$)FV = 1,000 (FVIFA $_{.08,3}$) (use table, or)FV = PMT $\left[(1+i)^n - 1 \\ i \end{bmatrix}$

If you invest \$1,000 each year at 8%, how much would you have after 3 years?

Present Value - annuity

What is the PV of \$1,000 at the end of each of the next 3 years, if the opportunity cost is 8%?

Present Value - annuity

What is the PV of \$1,000 at the end of each of the next 3 years, if the opportunity cost is 8%?

Present Value - annuity

What is the PV of \$1,000 at the end of each of the next 3 years, if the opportunity cost is 8%?

Mathematical Solution:

What is the PV of \$1,000 at the end of each of the next 3 years, if the opportunity cost is 8%?

Mathematical Solution:

 $PV = PMT (PVIFA_{i,n})$

What is the PV of \$1,000 at the end of each of the next 3 years, if the opportunity cost is 8%?

Mathematical Solution:

 $PV = PMT (PVIFA_{i,n})$

 $PV = 1,000 (PVIFA_{.08,3})$ (use table, or)

What is the PV of \$1,000 at the end of each of the next 3 years, if the opportunity cost is 8%?

Mathematical Solution:

 $PV = PMT (PVIFA_{i,n})$

 $PV = 1,000 (PVIFA_{.08,3})$ (use PVIFA table, or)

$$PV = PMT \begin{bmatrix} \frac{1}{1-(1+i)^n} \\ i \end{bmatrix}$$

What is the PV of \$1,000 at the end of each of the next 3 years, if the opportunity cost is 8%?

Time Value of Money

Lacey Inc. purchased a tract of land on which a \$60,000 payment will be due each year for the next five years. What is the present value of this stream of cash payments when the discount rate is 12%?

Time Value of Money

We could solve the problem like this . . .

Table Present Value of series of \$1 Cash Flows

Periods	10%	12%	14%
1	0.909	0.893	0.877
2	1.736	1.690	1.647
3	2.487	2.402	2.322
4	3.170	3.037	2.914
5	3.791	3.605	3.433

UNIVERSIDAD DE LONDRES

Time Value of Money

We could solve the problem like this . . .

Periods	10%	12%	14%
1	0.909	0.893	0.877
2	1.736	1.690	1.647
3	2.487	2.402	2.322
4	3.170	3.937	2.914
5	3.791	→ 3.605	3.433

$60,000 \times 3.605 = 216,300$

If the interest rate is 14%, how much would you have to put in the bank today so as to be able to withdraw \$100 at the end of each of the next five years? a. \$34.33

- b. \$500.00
- c. \$343.30
- d. \$360.50

If the interest rate is 14%, how much would you have to put in the bank today so as to be able to withdraw \$100 at the end of each of the next five years?

If the interest rate is 14%, what is the present value of \$100 to be received at the end of the 3rd, 4th, and 5th years?

- a. \$866.90
- b. \$178.60
- c. \$ 86.90
- d. \$300.00

If the interest rate is 14%, what is the present value of \$100 to be received at the end of the 3rd,

4th, and 5th years?

a. \$866.90 b. \$178.60 c. \$ 86.90

Periods	<u>10%</u>	<u>12%</u>	<u>14%</u>
1	0.909	0.893	0.877
2 3	1.736	1.690	1.64/
	2.487	2.402	2.322
4	3.170	3.037	2.914
5	3.791	3.605	3.433

\$100×(3.433-1.647)= \$100×1.786 = \$178.60

The Time Value of Money

Other Cash Flow Patterns

Perpetuities

- Suppose you will receive a fixed payment every period (month, year, etc.) forever. This is an example of a perpetuity.
- You can think of a perpetuity as an annuity that goes on forever.

Present Value of a Perpetuity

 When we find the PV of an annuity, we think of the following relationship:

Present Value of a Perpetuity

 When we find the PV of an annuity, we think of the following relationship:

PV = PMT (PVIFA i, n)

$(\mathbf{PVIFA} \mathbf{i}, \mathbf{n}) =$

 $(\mathbf{PVIFA} \mathbf{i}, \mathbf{n}) =$

We said that a perpetuity is an annuity where n = infinity. What happens to this formula when n gets very, very large?

^{LONDR}When n gets very large,

^{IONDR} When n gets very large,

$\frac{1}{1 - (1 + i)^n} \rightarrow \text{this becomes zero.}$

So we're left with PVIFA =

Present Value of a Perpetuity

• So, the PV of a perpetuity is very simple to find:

Present Value of a Perpetuity

• So, the PV of a perpetuity is very simple to find:

What should you be willing to pay in order to receive \$10,000 annually forever, if you require 8% per year on the investment?

What should you be willing to pay in order to receive \$10,000 annually forever, if you require 8% per year on the investment?

What should you be willing to pay in order to receive \$10,000 annually forever, if you require 8% per year on the investment?

= \$125,000

Using an interest rate of 8%, we find that:

Using an interest rate of 8%, we find that:

• The Future Value (at 3) is \$3,246.40.

Using an interest rate of 8%, we find that:

- The Future Value (at 3) is \$3,246.40.
- The Present Value (at 0) is \$2,577.10.

What about this annuity?

- Same 3-year time line,
- Same 3 \$1000 cash flows, but
- The cash flows occur at the beginning of each year, rather than at the <u>end</u> of each year.
- This is an *"annuity due."*

pagada

<u>Future Value - annuity due</u>

If you invest \$1,000 at the beginning of each of the next 3 years at 8%, how much would you have at the end of year 3?

<u>Future Value - annuity due</u>

If you invest \$1,000 at the beginning of each of the next 3 years at 8%, how much would you have at the end of year 3?

Mathematical Solution: Simply compound the FV of the ordinary annuity one more period:

Future Value - annuity due

If you invest \$1,000 at the beginning of each of the next 3 years at 8%, how much would you have at the end of year 3?

Mathematical Solution: Simply compound the FV of the ordinary annuity one more period:

 $FV = PMT (FVIFA_{i,n}) (1 + i)$

Future Value - annuity due

If you invest \$1,000 at the beginning of each of the next 3 years at 8%, how much would you have at the end of year 3?

Mathematical Solution: Simply compound the FV of the ordinary annuity one more period:

- $FV = PMT (FVIFA_{i,n}) (1+i)$
- $FV = 1,000 (FVIFA_{.08,3}) (1.08)$

(use FVIFA table, or)

Future Value - annuity due

If you invest \$1,000 at the beginning of each of the next 3 years at 8%, how much would you have at the end of year 3?

Mathematical Solution: Simply compound the FV of the ordinary annuity one more period:

- $FV = PMT (FVIFA_{i,n}) (1+i)$
- $FV = 1,000 (FVIFA_{.08,3}) (1.08)$

(use FVIFA table, or)

$$FV = PMT \left[\frac{(1+i)^n - 1}{i} \right] (1+i)$$

Future Value - annuity due

If you invest \$1,000 at the beginning of each of the next 3 years at 8%, how much would you have at the end of year 3?

Mathematical Solution: Simply compound the FV of the ordinary annuity one more period:

- $FV = PMT (FVIFA_{i,n}) (1 + i)$
- $FV = 1,000 (FVIFA_{.08,3}) (1.08)$

(use FVIFA table, or)

$$\mathbf{FV} = \mathbf{PMT} \left[\frac{(1+\mathbf{i})^n - 1}{\mathbf{i}} \right] (1+\mathbf{i})$$

 $FV = 1,000 \left[\frac{(1.08)^3 - 1}{.08} \right]$

Mathematical Solution: Simply compound the FV of the ordinary annuity one more period:

Mathematical Solution: Simply compound the FV of the ordinary annuity one more period:
PV = PMT (PVIFA _{i,n}) (1 + i)

- Is this an annuity?
- How do we find the PV of a cash flow stream when all of the cash flows are different? (Use a 10% discount rate).

Annual Percentage Yield (APY)

Which is the better loan:

- 8% compounded <u>annually</u>, or
- **7.85%** compounded <u>quarterly</u>?
- We can't compare these nominal (quoted) interest rates, because they don't include the same number of compounding periods per year!

We need to calculate the APY.

Annual Percentage Yield (APY)

• Find the APY for the quarterly loan:

• Find the APY for the quarterly loan:

$$APY = \left(1 + \frac{.0785}{4}\right)^4 - 1$$

• Find the APY for the quarterly loan:

$$APY = \left(1 + \frac{.0785}{4}\right)^4 - 1$$
$$APY = .0808, \text{ or } 8.08\%$$

• Find the APY for the quarterly loan:

$$APY = \left(1 + \frac{.0785}{4}\right)^4 - 1$$

APY = .0808, or 8.08%

• The quarterly loan is more expensive than the 8% loan with annual compounding!

 Cash flows from an investment are expected to be \$40,000 per year at the end of years 4, 5, 6, 7, and 8. If you require a 20% rate of return, what is the PV of these cash flows?

• Cash flows from an investment are expected to be \$40,000 per year at the end of years 4, 5, 6, 7, and 8. If you require a 20% rate of return, what is the PV of these cash flows?

• This type of cash flow sequence is often called a "deferred annuity."

*How to solve:*1) Discount each cash flow back to time 0 separately.

1) Discount each cash flow back to time 0 separately.

Or,

2) Find the PV of the annuity:

PV: End mode; P/YR = 1; I = 20; PMT = 40,000; N = 5 PV = \$119,624

2) Find the PV of the annuity:

PV3: End mode; P/YR = 1; I = 20; PMT = 40,000; N = 5 PV3= \$119,624

119,624

119,624

Then discount this single sum back to time 0.

PV: End mode; P/YR = 1; I = 20; N = 3; FV = 119,624; Solve: PV = \$69,226

69,226

119,624

69,226 119,624

• The PV of the cash flow stream is \$69,226.

 After graduation, you plan to invest \$400 per month in the stock market. If you earn 12% per year on your stocks, how much will you have accumulated when you retire in 30 years?

 After graduation, you plan to invest \$400 per month in the stock market. If you earn 12% per year on your stocks, how much will you have accumulated when-you retire in 30 years?

If you invest \$400 at the end of each month for the next 30 years at 12%, how much would you have at the end of year 30?

If you invest \$400 at the end of each month for the next 30 years at 12%, how much would you have at the end of year 30?

Mathematical Solution:

If you invest \$400 at the end of each month for the next 30 years at 12%, how much would you have at the end of year 30?

Mathematical Solution:

 $FV = PMT (FVIFA_{i,n})$ $FV = 400 (FVIFA_{.01,360})$ $FV = PMT \left[\frac{(1+i)^n - 1}{i} \right]$

(can't use FVIFA table)

If you invest \$400 at the end of each month for the next 30 years at 12%, how much would you have at the end of year 30?

Mathematical Solution:

 $FV = PMT (FVIFA_{i,n})$ $FV = 400 (FVIFA_{.01, 360})$ $\mathbf{FV} = \mathbf{PMT} \quad (\mathbf{1} + \mathbf{i})^n - \mathbf{1}$ $FV = 400 \left[(1.01)^{360} - 1 \right]$

(can't use FVIFA table)

= \$1,397,985.65

House Payment Example If you borrow \$100,000 at 7% fixed interest for 30 years in order to buy a house, what will be your monthly house payment?

House Payment Example If you borrow \$100,000 at 7% fixed interest for 30 years in order to

buy a house, what will be your

monthly house payment?

