Sydney Technical High School

TRIAL HIGHER SCHOOL CERTIFICATE

2007

MATHEMATICS EXTENSION 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Approved calculators may be used
- All necessary working should be shown in every question
- A table of standard integrals is supplies at the back of this paper
- Start each question on a new page
- Attempt all Questions 1 8
- All questions are of equal value
- Total marks 120

Name:			
Class:			

Question	TOTAL							
1	2	3	4	5	6	7	8	

a) Find by using a suitable substitution or otherwise

i)
$$\int \frac{dx}{\sqrt{9-16x^2}}$$

$$ii) \qquad \int \frac{dx}{\sqrt{x^2 + 6x + 13}}$$

iii)
$$\int \sec^3 x \tan x \, dx$$
 2

b) Using the substitution
$$x = 3 \tan \theta$$
 or otherwise find $\int \frac{dx}{(9+x^2)^{\frac{3}{2}}}$

c) i) Show that
$$\frac{d}{dx} \left[\frac{1}{2a} \log_e \left(\frac{x-a}{x+a} \right) \right] = \frac{1}{x^2 - a^2}$$

ii) Hence by using the substitution
$$x = u^2$$
 or otherwise find $\int \frac{\sqrt{x}}{x-1} dx$

Question 2 (15 marks)

a) Find
$$d$$
 if $(3+2i)(4-di)$ is wholly imaginary 2

b) If
$$\alpha = -2 + 2\sqrt{3}i$$
 and $\beta = 1 - i$

i) Find
$$\frac{\alpha}{\beta}$$
 in the form $x + iy$

ii) Express
$$\alpha$$
 in modulus – argument form 1

iii) Given
$$\beta = \sqrt{2} \left(\cos \left(\frac{-\pi}{4} \right) + i \sin \left(\frac{-\pi}{4} \right) \right)$$
 find the modulus- argument form of $\frac{\alpha}{\beta}$

iv) Hence find the exact value of
$$\cos(\frac{\pi}{12})$$

c)

On the Argand diagram above, OABC is a square. If B represents the complex number 4 + 6i find the complex number represented by C.

- d) i) Sketch the region in the complex number plane where the inequalities $|z-1| \le |z-i| and |z-2-2i| \le 1 hold simultaneously$
 - ii) If P is a point on the boundary of this region representing the complex number z, find the values of z in the form x + iy where $arg(z-1) = \frac{\pi}{4}$

a) The diagram shows the graph of $f(x) = \frac{2x}{1+x^2}$ for $x \ge 0$

For each of the following draw a one-third page sketch:

i) Sketch the graph of
$$y = \frac{2x}{1+x^2}$$
 for all real x

ii) Use your completed graph in (i) to help sketch the graphs of

$$\alpha) \qquad y = \frac{|2x|}{1+x^2}$$

$$\beta) \qquad y^2 = \frac{2x}{1+x^2}$$

$$\gamma) y = \log_e \left[\frac{2x}{1+x^2} \right] 2$$

iii) Sketch
$$y = \frac{1+x^2}{2x}$$
 clearly showing and stating the equations of any asymptotes.

iv) Find the value(s) of A so that the graphs of

$$y = \frac{Ax}{1+x^2}$$
 and $y = \frac{1+x^2}{Ax}$ have no points in common.

b) The area between the curve $y = \frac{2x}{1+x^2}$ and the x-axis for $0 \le x \le 1$ is rotated about the y-axis. Use the method of cylindrical shells to find the volume of the resulting solid of revolution

1

- a) $P(a\cos\theta, b\sin\theta)$ and $Q(a\cos(-\theta), b\sin(-\theta))$ are the extremities of the latus rectum, x = ae, of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
 - i) Draw a neat diagram, marking the points P and Q and clearly showing the angle θ .
 - ii) Show that $\cos \theta = e$
 - iii) Show that the length of PQ is $\frac{2b^2}{a}$
- b) Show that the area enclosed between the parabola $x^2 = 4ay$ and its latus rectum is $\frac{8a^2}{3}$ units $\frac{8a^2}{3}$ units
- c) A solid figure has as its base, in the xy plane, the ellipse $\frac{x^2}{16} + \frac{y^2}{4} = 1$.

 Cross-sections perpendicular to the x-axis are parabolas with latus rectums in The xy plane

- i) Show that the area of the cross-section at x = h is $\frac{16 h^2}{6}$ units².

 [use your answer to part(b)]
- ii) Hence, find the volume of this solid.
- d) Over the complex field $P(x) = 2x^3 15x^2 + Cx D$ has a zero x = 3 2i
 - i) Determine the other two zeros 2
 - ii) Find the value of D

Question 5 (15 marks)

- a) The roots of the equation $z^5 1 = 0$ are 1, w, w^2 , w^3 , w^4
 - i) Mark this information on an Argand diagram 1
 - ii) Find a real quadratic equation with roots $w + w^4$ and $w^2 + w^3$
 - iii) Hence find the value of $\cos \frac{2\pi}{5} + \cos \frac{4\pi}{5}$

b)

The curves $y = k - x^2$, for some real number k, and $y = \frac{1}{x}$ intersect at the points P, Q and R where $x = \alpha$, $x = \beta$ and $x = \gamma$.

- Show that the monic cubic equation with coefficients in terms of k whose roots are α^2 , β^2 and γ^2 is given by $x^3 2kx^2 + k^2x 1 = 0$
- ii) Find the monic cubic equation with coefficients in terms of k whose roots are $\frac{1}{\alpha^2}$, $\frac{1}{\beta^2}$ and $\frac{1}{\gamma^2}$

3

iii) Hence show that $OP^2 + OQ^2 + OR^2 = k^2 + 2k$, where O is the origin 2

c)

- i) Copy the diagram onto your page.
- ii) Prove BCRD is a cyclic quadrilateral (Hint: let $\angle D = \theta$)

3

Marks

Question 6 (15 marks)

a)

Consider the hyperbola $\frac{x^2}{9} - \frac{y^2}{16} = 1$

i) Write down the equation of each asymptote

1

ii) By differentiation find the gradient of the tangent to the hyperbola at $P(3\sec\theta, 4\tan\theta)$

1

iii) Show that the equation of the tangent at P is $4x = 3\sin\theta y + 12\cos\theta$

2

iv) Find the x-coordinate of U, the point where the tangent meets the asymptote (as shown on the diagram).

2

v) Using the x-values only, find the value for θ such that U is the mid point of PS.

2

1

b) i) Show that
$$\int_{0}^{\frac{\pi}{4}} \tan \theta \, d\theta = \frac{1}{2} \log_e 2$$

ii) If
$$I_n = \int_0^{\frac{\pi}{4}} \tan^n \theta \ d\theta$$
 show that for $n \ge 2$

$$I_n + I_{n-2} = \frac{1}{n-1}$$

iii) Hence evaluate
$$\int_{0}^{\frac{\pi}{4}} \tan^{5}\theta \ d\theta$$
 2

Question 7 (15 marks)

- a) i) Show that $\tan^{-1}(3) \tan^{-1}(\frac{1}{2}) = \frac{\pi}{4}$
 - ii) Prove by mathematical induction that

$$\sum_{r=1}^{n} \tan^{-1} \left(\frac{1}{2r^2} \right) = \tan^{-1} (2n+1) - \frac{\pi}{4}$$

is true for all integral values of n for $n \ge 1$

- b) A particle is moving in a straight line. After time t seconds it has displacement x metres from a fixed point θ on the line, velocity $v = \frac{1 x^2}{2} ms^{-1}$ and acceleration $a ms^{-2}$. Initially the particle is at θ .
 - i) Find an expression for a in terms of x
 - ii) Show that $\frac{2}{1-x^2} = \frac{1}{1+x} + \frac{1}{1-x}$ and hence find an expression for x in terms of t.
 - iii) Describe the motion of the particle, explaining whether it moves to the left or right of 0, whether it slows down or speeds up, and where its limiting position is.
- c) i) Differentiate $x^3 + y^3 = 6xy$ to find $\frac{dy}{dx}$.
 - ii) Find the x value(s) of the point(s) where $\frac{dy}{dx} = 0$

1

- a) i) If $S = 1 x + x^2 x^3 + \dots$ where |x| < 1, find an expression for S, the limiting sum, of the series.
 - ii) By integrating both sides of this expression and then making a substitution for x show that $\log_e 2 = 1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots$ 2
- b) i) Show that $\int x \tan^{-1} x \, dx = \frac{1}{2} (x^2 + 1) \tan^{-1} x \frac{1}{2} x + c$ 3
 - ii) If $I_n = \int_0^1 x^n \tan^{-1} x \, dx$ for $n \ge 2$ show that $I_n = \frac{\pi}{2(n+1)} \frac{1}{n(n+1)} \frac{n-1}{n+1} I_{n-2}$
- c) i) Write the general solution to $\cos 5\theta = \cos A$
 - ii) Hence or otherwise find the total number of solutions to the equation $\cos 5\theta = \sin \theta \text{ for } 0 \le \theta \le 10\pi$

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0. \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 + a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

NOTE: $\ln x = \log_e x$, x > 0