SYDNEY TECHNICAL HIGH SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION 2005

Mathematics Extension 2

General Instuctions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 120

- Attempt Questions 1 8
- All questions are of equal value

Name	\$ 6
Teacher	9

Question 1	Question 2	Question 3	Question 4	Question 5	Question 6	Question 7	Question 8	Tota

Question 1 (15 marks)

Marks

(a) Find
$$\int \frac{2x}{x+1} dx$$

(b) Find
$$\int \frac{dx}{\sqrt{8+2x-x^2}}$$

(c) Use partial fractions to find
$$\int \frac{2}{x^2 - x} dx$$

(d) Find
$$\int \sin 2x \cos^3 x \, dx$$

(e) Find
$$\int \frac{1}{(36+x^2)^{\frac{3}{2}}} dx$$
 using the substitution $x = 6 \tan \theta$

Question 2 (15 marks) (Start a new page)

Marks

(a) Find the gradient of the curve
$$2x^3 - x^2y + y^3 = 1$$
 at the point $(2,-3)$.

(b) Solve
$$|x-2| + |x+1| = 3$$

QUESTION 2 (Continued)

(c) The base of a solid is the area enclosed by the curve $y = x^2$, the line x = 2 and the x axis. Each cross-section of the solid by a plane perpendicular to the x axis is a regular hexagon with one side in the base of the solid.

Find the volume of the solid.

(d)

The sketch above shows the function y = f(x).

Sketch possible graphs of the following

$$(i) \quad y = \frac{1}{f(x)}$$

(ii)
$$y = \int f(x) dx$$
 2

(iii)
$$y^2 = f(x)$$

Question 3 (15 marks) (Start a new page)

Marks

- (a) Given $z = -3\sqrt{3} + 3i$
 - (i) express z in modulus argument form.

- 2
- (ii) find the smallest positive integer n such that z^n is real.
- housed

(b) Evaluate $\operatorname{Im}\left(\frac{4}{1-i}\right)$

2

(c) Sketch the locus described by |z+2| = |z-4i|

2

(d) (i) Sketch the intersection of the locus described by

3

$$|z| \le 3$$
 and $-\frac{\pi}{4} \le \arg(z+3) \le \frac{\pi}{4}$

(ii) If the complex number ω lies on the boundary of the region

2

- sketched in part (i), find the minimum value of $|\omega|$.
- (e) OABC is a rectangle on the Argand diagram in which side OC is twice the length of OA, where O is the origin.
 - (i) If A represents the complex number 1 + 2i, find the complex numbers

represented by B and C given that the argument of the complex number

represented by the point C is negative..

(ii) If this rectangle is rotated anticlockwise $\frac{\pi}{3}$ radians about O, find

1

2

the complex number represented by the new position of A.

Question 4 (15 marks) (Start a new page)

Marks

,

- (a) For the hyperbola with equation $4x^2 9y^2 = 36$ find,
 - (i) the eccentricity

2

(ii) the equation of the asymptotes

1

- (b) Given the point $P(a \sec \theta, b \tan \theta)$ lies on the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$
- (i) Show that the tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$

at the point $P(a \sec \theta, b \tan \theta)$ has equation $\frac{x \sec \theta}{a} - \frac{y \tan \theta}{b} = 1$

3

(ii) If this tangent in part (i) meets the directrix of the hyperbola

4

 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ corresponding to the focus at S(ae, o) at the point Q,

show that $\angle PSQ$ is a right angle.

(c) (i) Show that $(1-\sqrt{x})^{n-1}\sqrt{x} = (1-\sqrt{x})^{n-1} - (1-\sqrt{x})^n$

4

And A

(ii) If $I_n = \int_0^1 (1 - \sqrt{x})^n dx$ for $n \ge 0$

show that $I_n = \frac{n}{n+2} I_{n-1}$ for $n \ge 1$.

Question 5 (15 marks) (Start a new page)

(a) The region bounded by the curves y = x² and y = x + 2
 4 is rotated about the line x = 3.
 Use the method of cylindrical shells to find the volume of the solid of revolution formed.

Marks

- (b) Solve the equation $8x^4 + 12x^3 30x^2 + 17x 3 = 0$ given that it has a triple root.
- (c) If α, β, δ are the roots of $x^3 + px^2 + qx + r = 0$,

 find the polynomial equation with roots $\alpha^2, \beta^2, \delta^2$.
- (d) The acceleration of a particle moving in simple harmonic motion is given by $\ddot{x} = -n^2x$ where x is the displacement of the particle from the origin and n is a constant.
 - (i) Show that the velocity ν of the particle is given by $v^2 = n^2(a^2 x^2) \quad \text{where} \quad a \text{ is the amplitude of the motion.}$
 - (ii) Given that the speed of the particle is Vm/s when it is d metres from the origin and that its speed is $\frac{V}{2}m/s$ when it is 2d metres from the origin, show that :
 - α) the particle's amplitude is $\sqrt{5}d$ metres.
 - β) the period of the motion is $\frac{4\pi d}{V}$ seconds.

Question 6 (15 marks) (Start a new page)

Marks

- (a) Evaluate $\int_0^{\frac{\pi}{2}} \frac{dx}{2 + \cos x}$ using the substitution $t = \tan \frac{x}{2}$
- (b) A particle of mass m is fired vertically upwards with initial velocity V m/s and is subjected to air resistance equal to mkv Newtons where k is a constant and v is the velocity of the particle in metres per second as it moves through the air.
 - (i) Explain why the equation of motion of the particle is given by $\ddot{x} = -g kv \text{ where } g \text{ is the acceleration due to gravity.}$
 - (ii) Show that the maximum height reached by the particle is given by $H = \frac{V}{k} \frac{g}{k^2} \ln(1 + \frac{kV}{g})$
- (c) (i) Find the seven complex roots of the equation $z^7 = 1$.
 - (ii) If ω is the complex root of $z^7 = 1$ 1
 with smallest positive argument, find the value of

$$1 + \omega + \omega^2 + \omega^3 + \omega^4 + \omega^5 + \omega^6$$

(iii) Find the cubic equation whose roots are $\omega + \omega^6 \ , \ \omega^2 + \omega^5 \ , \ \omega^3 + \omega^4$

Question 7 (15 marks) (Start a new page)

Marks

(a)

In the diagram above, OA is a radius of a circle C with centre O, and two circles D and E are drawn touching the line OA at A as shown. The larger circle D meets circle C again at B, and the line AB meets the smaller circle E again at P. The line OP meets circle E again at Q, and the line BQ meets the circle D again at R.

(i) Let
$$\angle OAP = \theta$$
. Explain why $\angle PQA = \theta$.

(iii) Prove that OQ bisects
$$\angle BQA$$
.

(iv) Prove that
$$OQ//AR$$

QUESTION 7 (Continued)

(b) $y = \ln x$ 0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

In the diagram above, the curves $y = \ln x$ and $y = \ln (x-1)$ are sketched and k-1 rectangles are constructed between x=2 and x=k+1 where $k \ge 2$. Let $S = \ln 2 + \ln 3 + \ln 4 + \dots + \ln k$.

- (i) Explain why S represents the sum of the areas of the k-1 rectangles.
- (ii) Use an appropriate integration method to show that

$$\int_{2}^{k+1} \ln(x-1) \ dx = k \ln k - k + 1$$

(iii) Hence show that
$$k^{k} < k!e^{k-1} < \frac{1}{4}(k+1)^{k+1}$$
 where $k \ge 2$

(note
$$n! = n(n-1)(n-2).....3 \times 2 \times 1$$
)

Question 8 (15 marks) (Start a new page)

Marks

(a) Find all x such that $\sin x = \cos 5x$ and $0 < x < \pi$.

3

(b) If z is a complex number for which

2

$$|z| = 1$$
 and $\arg(z) = \theta$, $0 \le \theta \le \frac{\pi}{2}$,

find the value of $\arg\left(\frac{2}{1-z^2}\right)$ in terms of θ .

Question 8 continued on next page.

The curve $f(x) = \frac{2x}{1+x^2}$ is sketched above. It has a maximum turning point at (1,1) and minimum turning point at (-1,-1).

(i) State the range of
$$f(x) = \frac{2x}{1+x^2}$$

(ii) Let x_0 be a real number not equal to 1 or -1 and consider the sequence of real numbers defined by $x_{n+1} = f(x_n)$ for $n = 0, 1, 2, \dots$

(
$$\alpha$$
) Given $x_1 = g(r)$ and $g(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$ express r in terms of x_1 .

(β) Hence deduce that there exists a real number r such that $x_1 = g(r)$ 1 where $g(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$.

(
$$\delta$$
) Show that $\frac{2 g(x)}{1 + (g(x))^2} = g(2x)$.

(γ) Hence, using the above results and Mathematical Induction 4 show that $x_n = g(2^{n-1} r)$ for $n = 1, 2, 3, \dots$

End of Paper