Name:	Maths Class:
-------	--------------

SYDNEY TECHNICAL HIGH SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE 2004

Mathematics Extension 2

TIME ALLOWED: 3 hours

Instructions:

- Write your name and class at the top of this page, and at the top of each answer sheet.
- At the end of the examination this examination paper must be attached to the front of your answers.
- All questions are of equal value and may be attempted.
- All necessary working must be shown. Marks will be deducted for careless or badly arranged work.
- Marks indicated are a guide only and may be varied if necessary.

(FOR MARKERS USE ONLY)

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	TOTAL
	<u> </u>							

QUESTION 1:

2 (a) (i)
$$\int \frac{dx}{x^2 + 6x + 13}$$

2 (ii)
$$\int_{0}^{4} \frac{dx}{(2x+1)\sqrt{2x+1}}$$

3 (b) Show that
$$\int x^n e^x dx = x^n e^x - n \int x^{n-1} e^x dx$$
Hence find
$$\int x^2 e^x dx$$

3 (c) Sketch the locus of the point Z in the Argand plane, which moves so that
$$arg(z-1) = \frac{\pi}{2}$$

3 (d) (i) Find values of A, B and C so that
$$\frac{13}{(x^2+4)(x+3)} = \frac{Ax+B}{x^2+4} + \frac{C}{x+3}$$

2 (ii) Hence find
$$\int \frac{13dx}{(x^2+4)(x+3)}$$

QUESTION 2:

(a) If
$$z = 1 + \sqrt{3}i$$
 find

4 (i) $\frac{1}{z}$ (ii) |z| (iii) arg z (iv) arg(iz)

(b) Express $z = 1 + \sqrt{3}i$ in mod-arg form and hence find

3 (i) \sqrt{z} (ii) z^6 (in simplest form)

- On the same set of axes, sketch y = |x-1| and y = |x+1| and then use this graph, or otherwise, to find the value of k if $|x-1|+|x+1| \ge k$ for all values of x.
- 3 The point W represents the complex number w=a+ib, and $w=\frac{z}{z+1}$ where z=x+iy.

 The point Z representing the complex number z moves along the y-axis only.

Show that
$$a = \frac{y^2}{1+y^2}$$
 and $b = \frac{y}{1+y^2}$

2 (ii) Find the locus of W both algebraically and geometrically.

QUESTION 3:

4 (a) (i) Using the method of Mathematical Induction, prove deMoivre's Theorem

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

Prove that the points on the Argand Diagram with co-ordinates representing $(\operatorname{cis} \frac{\pi}{3})^n$ for n=1,2,3...,6 are the vertices of a regular hexagon inscribed in a circle of radius 1 unit.

- (b) If $f(x) = \cos x + i \sin x$,
- 1 (i) Find f(0)
- 1 (ii) Show that $\frac{f'(x)}{f(x)} = i$
- 3 (iii) By integrating both sides of part (ii), deduce that $\cos x + i \sin x = e^{ix}$. This is EULER's THEOREM.
- 1 (iv) Using Euler's Theorem from part (iii), prove deMoivre's Theorem
- 1 (c) (i) Describe the locus of the point z, where |z-a|=r
- 2 (ii) If |z-a|=r and |z-b|=s what is the geometric significance when |a-b|=r+s

QUESTION 4:

- 3 (a) By using t-results, or otherwise, find $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{d\theta}{\sin \theta}$ leaving your answer in exact form
 - (b) Sketch the following on different sets of axes showing all important features

(DO NOT USE CALCULUS)

8

(i)
$$y = \frac{|x|}{x}$$

(ii)
$$y = \ln(\frac{1}{r^2})$$

(iii)
$$y = |\tan x|$$
 for $-\frac{\pi}{2} < x < \frac{\pi}{2}$

(iv)
$$y = \sec x$$
 for $-2\pi \le x \le 2\pi$

4 (c) Use calculus, or otherwise, to sketch $y = \frac{e^x}{x}$ showing all stationary points and asymptotes, if they exist.

QUESTION 5:

(a) For the ellipse
$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
 find

- 3 (i) the eccentricity
 - (ii) the co-ordinates of the foci
 - (iii) the equations of the directrices

3 (b) Given that
$$P(x) = 3x^3 - 11x^2 + 8x + 4$$
 has a double root, fully factorise $P(x)$

In the diagram above, the points A, B and C represent the points of intersection of the line y = 4x + 8 and the curve $y = \frac{1}{x^2}$. The x-values of A, B and C are α , β and γ

- 1 (i) Show that α , β and γ satisfy $4x^3 + 8x^2 1 = 0$
- 3 (ii) Find a polynomial with roots α^2 , β^2 and γ^2

2 (iii) Find
$$\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2}$$

3 (iv) Prove that
$$OA^2 + OB^2 + OC^2 = 1$$
, 132 where O is the origin.

QUESTION 6:

(a)

 $P(a\cos\theta,\,b\sin\theta)$ is any point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. The tangent at P cuts the major axis in T and the Directrix in R. N is the foot of the perpendicular from P to the major axis, O is the centre and S is the focus.

- Show that the equation of the tangent at P is $\frac{x \cos \theta}{a} + \frac{y \sin \theta}{b} = 1$
- 2 (ii) Show that ON.OT = a^2
- 5 (iii) Showing all steps carefully, prove that $\angle PSR = 90^{\circ}$

QUESTION 6 continues on the next page...)

QUESTION 6 continued...)

(b)

3

A solid S is formed by rotating the region bounded by the parabola $y^2 = 16(1-x)$ and the y-axis through 2π about the line x=2.

3 (i) Use the method of cylindrical shells to show that the volume of S is given by

$$\int_{0}^{1} 16\pi(2-x)\sqrt{1-x}dx$$

(ii) Calculate this definite integral by using the substitution u=1-x (or otherwise)

QUESTION 7:

(a) If l, w_1 and w_2 are the cube roots of unity, prove that

(i) $w_1 = \overline{w_2} = w_2^2$

1 (ii) $w_1 + w_2 = -1$

1 (iii) $w_1 w_2 = 1$

3 (b) By using the substitution $x = a \sin \theta$ or otherwise, verify that $\int_{0}^{a} \sqrt{a^2 - x^2} dx = \frac{1}{4} \pi a^2$

2 Deduce that the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab

6 (iii)

The diagram above shows a mound of height H. At height h above the horizontal base, the horizontal cross section of the mound is elliptical in shape, with equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \lambda^2$$
 where $\lambda = 1 - \frac{h^2}{H^2}$

and x and y are co-ordinates in the plane of cross section.

Show that the volume of the mound is $\frac{8\pi abH}{15}$

QUESTION 8:

2 (a) (i) Show that the equation of the tangent to the Hyperbola
$$xy = c^2$$
 at the point $P(cp, \frac{c}{p})$ is $x + p^2y = 2cp$

2 (ii) If the tangents at the points P and
$$Q(cq, \frac{c}{q})$$
 meet at the point $R(x_1, y_1)$ prove that

$$(\alpha) \quad pq = \frac{x_1}{y_1}$$

and that

$$(\beta) \qquad p+q=\frac{2c}{y_1}$$

2 (iii) If the length of the chord PQ is d units, show that

$$d^{2} = c^{2}(p-q)^{2}\left\{1 + \frac{1}{p^{2}q^{2}}\right\}.$$

3 (iv) Further, if d in part (iii) above remains constant, deduce that the locus of R is given by

$$4c^{2}(x^{2}+y^{2})(c^{2}-xy)=x^{2}y^{2}d^{2}$$

(b) If n is a positive integer and
$$f(x) = e^{-x} (1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}), x \ge 0$$

3 (i) Show that f(x) is a decreasing function

NOTE:
$$n! = 1x2x3x4....(n-1)n$$

3 (ii) Deduce that for x>0 and n any positive integer,

$$e^{x} \ge 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!}$$

End of Examination