Trial Higher School Certificate Examination

2012

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen.
- · Write your student number on each booklet.
- Board-approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- The mark allocated for each question is listed at the side of the question.
- Marks may be deducted for careless or poorly presented work.

Total Marks - 100

Section I – Pages 2 – 4

10 marks

- Attempt Questions 1 10.
- Allow about 15 minutes for this section.
- Answer on the sheet provided.

Section II – Pages 5 – 13 90 marks

- Attempt Questions 11 16
- Allow about 2 hours 45 minutes for this section.
- Begin each question in a new booklet.
- Show all necessary working in Questions 11 – 16.
- Templates for Q12(a) to be detached and placed in answer booklet.

Q12

Students are advised that this is a Trial Examination only and does not necessarily reflect the content or format of the Higher School Certificate Examination.

Section I - (10 marks)

Marks

Answer this section on the answer sheet provided at the back of this paper. Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

1. The maximum value of y reached by the ellipse with equation

$$\frac{3(x+3)^2}{5} + \frac{(y-4)^2}{6} = 3$$

is:

A.
$$-4 + 3\sqrt{2}$$

B.
$$4 + \sqrt{5}$$

C.
$$3\sqrt{2}$$

D.
$$4 + 3\sqrt{2}$$

The graph of $f(x) = \frac{1}{x^2 + mx - n}$, where m and n are real constants, has no vertical asymptotes if

A.
$$m^2 < 4n$$

B.
$$m^2 > 4n$$

C.
$$m^2 = -4n$$

D.
$$m^2 < -4n$$

The number of real solutions to $x^4 - x^3 = \csc^2(x) - \cot^2(x)$ is: 3.

- A. 0
- B. 1
- C. 2
- 3 D.

4. If $z = \frac{3+4i}{1+2i}$, the imaginary part of z is:

A.
$$-2$$
 B. $-\frac{2}{5}i$ C. $-\frac{2}{5}$

C.
$$-\frac{2}{5}$$

D.
$$-2i$$

Section I (cont'd)

Marks

- If $I = \int_0^{\ln 2} \frac{e^x}{e^x + e^{-x}} dx$ and $J = \int_0^{\ln 2} \frac{e^{-x}}{e^x + e^{-x}} dx$, then the exact value of I - I is:
 - A. $\ln\left(\frac{5}{2}\right)$

- B. $\ln 2$ C. $\ln(5)$ D. $\ln\left(\frac{5}{4}\right)$
- If $z = \sqrt{3} + i$ then in modulus/argument form $z = 2\operatorname{cis} \frac{\pi}{6}$. If $z^n + (\bar{z})^n$ is to be rational, then the integer n' can not be:
 - A. 2
 - В. 3
 - C. 5
 - D. 6
- Given hyperbola \mathcal{H} with equation $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ has eccentricity e then the 7. ellipse E with equation $\frac{x^2}{a^2+b^2} + \frac{y^2}{b^2} = 1$ has eccentricity.
- B. $\frac{1}{e}$ C. \sqrt{e}
- D. e^2

÷.

- What restrictions must be placed on p if α, β, γ are the three, non-zero real roots of the equation $x^3 + px 1 = 0$? 8.
 - A. p > 0, p is real
 - B. p < 0, p is real
 - C. $p \ge 0$, p is real
 - D. $p \le 0$, p is real

Section I (cont'd)

Marks

9. Given that $\frac{dy}{dx} = y^2 + 1$, and that y = 1 at x = 0, then

A.
$$y = \tan\left(x - \frac{\pi}{4}\right)$$

B.
$$y = \tan\left(x + \frac{\pi}{4}\right)$$

$$C. \quad x = \log_e \left(\frac{y^2 + 1}{2} \right)$$

D.
$$y = \frac{1}{3}y^3 + y - \frac{1}{3}$$

10.

A possible equation for the graph of the curve shown above is

A.
$$y = \frac{x^3 + a}{x}, \quad a > 0$$

B.
$$y = \frac{x^3 + a}{x}$$
, $a < 0$

C.
$$y = \frac{2x^4 + a}{x^2}, \ a > 0$$

D.
$$y = \frac{x^4 + a}{x^2}$$
, $a < 0$

Section II - Show all working

Question 11 - Start A New Booklet - (15 marks)

Marks

a) Find
$$\int \frac{dx}{\sqrt{3-4x-4x^2}}$$

2

b) Evaluate
$$\int_0^{\frac{\pi}{6}} \frac{d\theta}{9 - 8\cos^2\theta}$$
 using the substitution $t = \tan\theta$

3

c) Find
$$\int \frac{dx}{(x+1)(x^2+4)}$$

3

d) Evaluate
$$\int_0^1 \tan^{-1} x \ dx$$

2

e) If
$$I_n = \int_0^{\frac{\pi}{2}} \sin^n x \cdot dx$$
 show that $I_n = \frac{n-1}{n}$. I_{n-2}

3

Hence evaluate
$$\int_0^{\frac{\pi}{2}} \sin^5 x \cdot dx$$

2

Question 12 - Start A New Booklet - (15 marks)

Marks

2

2

a) The sketch of y = f(x) is shown below where $f(x) = \frac{x^2 - x - 2}{x - 1}$

- (i) Show that y = x is an asymptote.
- (ii) Sketch each of the following on the template provided.

(
$$\alpha$$
) $y = |f(x)|$

$$(\beta) \quad y = f(1-x) \tag{2}$$

$$(\gamma) \quad y^2 = f(x) \tag{2}$$

- b) Consider the curve C: $x^2 + xy + y^2 = 9$
 - (i) Find $\frac{dy}{dx}$
 - (ii) Find all stationary points and points where $\frac{dy}{dx}$ is not defined.
 - (iii) Sketch C clearly showing the above features and intercepts on the x, y axes.

Question 13 - Start A New Booklet - (15 marks)

Marks

- a) If $z = (1+i)^{-1}$.
 - (i) Express \bar{z} in modulus-argument form.

2

(ii) If $(\bar{z})^9 = a + ib$ where a and b are real numbers, find the values of a and b

2

b) Sketch each of the following on separate Argand diagrams.

(i)
$$|z-2+3i| = |z+2-3i|$$

2

(ii)
$$arg(z+3-i) = \frac{3\pi}{4}$$

2

c) (i) On an Argand diagram sketch $|z - \sqrt{2} - \sqrt{z} i| = 1$

2

(ii) Find the minimum values of |z| and $\arg z$

3

The points T,P and Q in the complex plane correspond to the complex numbers 1, $\sqrt{3} + i$ and 2 + 2i respectively.

2

Triangles OTP and OQR are similar with corresponding angles as shown in Fig I. Find the complex number represented by R (in modulus argument form).

Fig I

b)

Question 14 - Start A New Booklet - (15 marks)

Marks

2

a) The polynomial equation $x^3 - 6x^2 + 3x - 2 = 0$ has roots α, β, γ . Evaluate $\alpha^3 + \beta^3 + \gamma^3$

1

3

c) Given that -2 - i is a zero of $P(x) = x^4 + 6x^3 + 14x^2 + 14x + 5$, find all zeros of P(x)

derived polynomial P'(x) has that same zero with multiplicity 'm-1'

Prove that if a polynomial P(x) has a zero of multiplicity 'm' then the

- d) (i) Prove that $\cos 3\theta = 4\cos^3 \theta 3\cos \theta$ by use of de Moivre's theorem. 2
 - (ii) Find the general solution of $\cos 3\theta = \frac{1}{2}$
 - (iii) Solve for $x: 8x^3 6x 1 = 0$
 - (iv) Find a polynomial of least degree which has zeros

$$\sec^2\frac{\pi}{9},\sec^2\frac{5\pi}{9},\sec^2\frac{7\pi}{9}$$

(v) Hence evaluate $\sec^2 \frac{\pi}{9} + \sec^2 \frac{5\pi}{9} + \sec^2 \frac{7\pi}{9}$

Question 15 - Start A New Booklet - (15 marks)

Marks

3

a) Using the method of cylindrical shells, find the volume generated by revolving the area bounded by the lines $\begin{cases} x=2\\ x=0 \end{cases}$ and the two branches of the hyperbola $\frac{y^2}{9} - \frac{x^2}{4} = 1$ about the *y*-axis (as shown in the diagram)

b) (i)

The ellipse shown has equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Prove that the area enclosed by this ellipse is πab

3

Question 15 (cont'd)

Marks

b) (ii)

A solid of height 10 m stands on horizontal ground.

- The base of the solid is an ellipse with semi-axes of 20 m and 10 m.
- The top of the solid is an ellipse with semi-axes of 10 m and 5 m.

Horizontal cross-sections taken parallel to the base and at height h metres above the base are ellipses with semi-axes x metres and $\frac{x}{2}$ metres.

The centres of these elliptical cross-sections and the base lie on a vertical straight line, and the extremities of their semi-axes lie on sloping straight lines as shown in the diagram.

(
$$\alpha$$
) Prove that $x = 20 - h$

2

 (β) Find the volume of the solid correct to the nearest cubic metre.

3

Question 15 (cont'd)

Marks

1

1

c) The diagram shows the hyperbola xy = 4

(i) What are the coordinates of the foci S and S'?

(ii) The point $P(2t, \frac{2}{t})$ lies on the curve, where $t \neq 0$. The normal at P intersects the straight line y = x at N. O is the origin.

Given the equation of the normal at P is $y = t^2x + \frac{2}{t} - 8$

(α) Find the coordinates of N

 (β) Show that the triangle *OPN* is isosceles 2

Question 16 - Start A New Booklet - (15 marks)

Marks

١

a) A parachutist of mass M is initially located travelling downward in a straight line with a speed of v_0 . [let x = 0 at t = 0]

If the resistance on the parachute is proportional to the speed and the gravitational force is g.

(i) Show that the speed, v, can be given as

$$v = \frac{g}{k} - \left(\frac{g}{k} - v_0\right)e^{-kt}$$

- (k) is constant of proportionality.
- (ii) Find the parachutist's "terminal" velocity.

Question 16 (cont'd)

b) $P(a\cos\theta, \ b\sin\theta)$ and $Q(a\sec\theta, \ b\tan\theta)$ lie on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, respectively as shown.

M and N are the feet of the perpendicular from P and Q respectively to the x-axis. $0 < \theta < \frac{\pi}{2}$, and QP meets the x-axis at K. A is the point (a,0).

(i) Given
$$\Delta KPM ||| \Delta KQN$$
, show that $\frac{KM}{KN} = \cos \theta$

1

2

3

(ii) Hence, show that
$$K$$
 has coordinates $(-a, 0)$

(iii) Show that the tangent to the ellipse at *P* has equation $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$, and deduce it passes through *N*

(iv) Given that the tangent to the hyperbola at
$$Q$$
 has equation
$$\frac{x\sec\theta}{a} - \frac{y\tan\theta}{b} = 1, \text{ show that the tangent passes through } M. \qquad 2$$
If T is the point of intersection of PN and QM , show that AT is perpendicular to the x-oxis.

c) Using mathematical induction prove that

$$\sum_{r=1}^{n} r^3 < n^2(n+1)^2$$

<u>.</u>