Mrs Colle	et	t
Ms Lau		

Nam	e:	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	**********
Teache	r:			***********

2011TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total Marks - 120

- Attempt Questions 1–8
- All questions are of equal value

Mark	/120
Rank	/18
Highest Mark	/120

Blank Page

Total marks – 120 Attempt Questions 1–8 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Que	stion 1	(15 marks) Use a SEPARATE writing booklet	Marks
(a)	If z	= $3 + 2i$ and $\omega = 1 + i$, find in the form $a + ib$ where a and b are real	
	(i)	$2z-i\omega$.	1
	(ii)	$z\overline{w}$.	1
	(iii)	$\frac{3}{\omega}$.	· 1
(b)		e Argand diagram, sketch the locus of z described by the inequality $-3i \ge z+i $.	2
(c)	Let c	$ \alpha = -\sqrt{3} + i $	•
	(i)	Express α in modulus-argument form.	2
	(ii)	Show that α is a root of the equation $z^6 + 64 = 0$.	1
	(iii)	Hence, find a real quadratic factor of the polynomial $P(z) = z^6 + 64$.	2

Question 1 continues on page 3

Question 1 (continued)

Marks

(d) The diagram shows a complex plane with origin O.

Points P and Q represent non-zero complex numbers z and w respectively.

(i) Write down the length of PQ in terms of z and w.

1

(ii) Copy the diagram into your booklet. Construct point R that represents z + w.

2

What type of quadrilateral is OPQR?

(iii) Prove that if |z+w| = |z-w|, the complex number $\frac{w}{z}$ is imaginary.

2

(a) (i) Find the value of a and b such that

2

$$\frac{1}{(x-1)(2x+3)} = \frac{a}{x-1} + \frac{b}{2x+3}.$$

(ii) Hence find $\int \frac{dx}{(x-1)(2x+3)}$.

2

(b) Use the substitution $t = \tan x$ to find $\int \csc 2x \ dx$.

3

(c) Evaluate $\int_{-\frac{1}{2}}^{0} \frac{dx}{2+4x+4x^2}$.

2

(d) Evaluate $\int x(3^x) dx$.

3

(e) Use the substitution $x = u^6$ to find $\int \frac{dx}{x^2 - x^3}$.

3

1

(a) The diagram below is a sketch of the function y = f(x). The lines x = 0, y = 0 and y = 1 are asymptotes.

Using the answer sheets provided, sketch each of the graphs below.

In each case, clearly label any maxima or minima, intercepts and the equations of any asymptotes.

$$(i) y = f(|x|).$$

(ii)
$$y = \frac{1}{f(x)}.$$

(iii)
$$y^2 = f(x)$$
.

(iv)
$$y = [f(x)]^2$$
.

(v)
$$y = \sin^{-1}[f(x)].$$
 2

Question 3 continues on page 6

Question 3 (continued)

Marks

- (b) Consider the curve $y = \frac{x^3 + 4}{x^2}$.
 - (i) Find the coordinates of the stationary point and show that this curve is always concave up.

2

(ii) Find the equations of any asymptotes.

1

(iii) Sketch the curve.

2

(iv) Find the values of k for which the equation $x^3 - kx^2 + 4 = 0$ has 3 distinct real roots.

1

Question 4 (15 marks)

Use a SEPARATE writing booklet

Marks

- (a) Given that (x+1) is a factor of the polynomial $P(x) = x^3 + 2x^2 + 2x + 1$, factorise P(x) over the field of complex numbers.
- (b) The polynomial equation $x^3 3x^2 + 5x 1 = 0$ has roots α, β and γ .
 - (i) Find the value of $\alpha^2 + \beta^2 + \gamma^2$.

(ii) Hence explain why only one root of the equation is real.

1

3

2

- (c) ω and ω^2 are the two complex cube roots of unity. If ω and ω^2 are also the roots of the equation $x^3 + px^2 + qx + r = 0$, show that p = q.
- (d) Given $\cos 3\theta = 4\cos^3 \theta 3\cos \theta$ and using the substitution $x = \cos \theta$,
 - (i) Solve $8x^3 6x + 1 = 0$.

2

(ii) Hence prove that $\sec \frac{2\pi}{9} + \sec \frac{4\pi}{9} + \sec \frac{8\pi}{9} = 6$.

2

(e) Let the roots of $x^3 - x - 1 = 0$ be α, β and γ .

3

Find the polynomial whose roots are $\frac{1+\alpha}{1-\alpha}$, $\frac{1+\beta}{1-\beta}$ and $\frac{1+\gamma}{1-\gamma}$.

Question 5 (15 marks)

Use a SEPARATE writing booklet

Marks

2

- (a) Consider the ellipse $\frac{x^2}{9} + \frac{y^2}{25} = 1$
 - (i) Find the coordinates of the foci and the equations of the directrices of the ellipse.
 - (ii) Sketch the ellipse, showing all key features, including intercepts.
- (b) $P\left(2p, \frac{2}{p}\right)$ and $Q\left(2q, \frac{2}{q}\right)$ are points on the rectangular hyperbola xy = 4. P and Q move on the hyperbola so that PQ always passes through (6,4).

(i) Show that
$$pq = \frac{p+q-3}{2}$$
.

- (ii) If M is the midpoint of PQ, find the equation of the locus of M.
- (c) The tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b > 0) at $P(a\cos\theta, b\sin\theta)$ passes through a focus of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ with eccentricity e.
 - (i) Show that the tangent to the ellipse at P has equation $bx \cos \theta + ay \sin \theta = ab$.
 - (ii) Show that P lies on the directrix of the hyperbola.
 - (iii) Find the possible values of the gradient of the tangent at P. 2

3

3

- (a) On the Argand diagram P(z) is a point in the first quadrant of the circle |z|=3. If $arg(z)=\theta$, find in terms of θ , expressions for:
 - (i) $\arg z^4$
 - (ii) arg(z-3).
- A stone is projected from a point on the ground and it just clears a fence d metres away. The height of the fence is h metres.
 The angle of projection to the horizontal is θ and the speed of projection is ν m/s. The displacement equations, measured from the point of projection are

 $x = vt \cos \theta$ and $y = \frac{-1}{2}gt^2 + vt \sin \theta$.

- (i) Show that $v^2 = \frac{gd^2 \sec^2 \theta}{2(d \tan \theta h)}$.
- (ii) Show that the maximum height reached by the stone is

$$\frac{d^2\tan^2\theta}{4(d\tan\theta-h)}.$$

(iii) Show that the stone will just clear the fence at its highest point if

$$\tan \theta = \frac{2h}{d}$$
.

(c) (i) If $I_n = \int_0^{\frac{1}{2}} \frac{x^n}{1 - x^2} dx$ for $n = 0, 1, 2, 3, \dots$ show that

$$I_{n-2} - I_n = \frac{1}{(n-1)2^{n-1}}$$
 for $n = 2, 3, 4, \dots$

(ii) Given that $\int_0^{\frac{1}{2}} \frac{1}{1-x^2} dx = \frac{1}{2} \log_e 3$, find the exact value of $\int_0^{\frac{1}{2}} \frac{x^2}{1-x^2} dx$.

(a)

In the diagram above, AB is a fixed chord of a circle and C is a variable point on the major arc AB.

The angle bisectors of $\angle CAB$ and $\angle ABC$ meet the circle again at P and Q respectively.

Let $\angle CAB = 2\alpha$, $\angle ABC = 2\beta$ and $\angle BCA = 2\gamma$.

(i) Show that
$$\angle PCQ = \alpha + \beta + 2\gamma$$
.

1

(ii) Hence explain why the distance PQ is constant.

2

2

(iii) Use the sine rule to show that
$$\frac{AB}{PO} = 2 \sin \gamma$$
.

2

(b) (i) Use DeMoivre's Theorem to show that when n is a positive integer, $(1+i\tan\theta)^n + (1-i\tan\theta)^n = \frac{2\cos n\theta}{\cos^n\theta} \quad (\cos\theta \neq 0).$

(ii) Hence show that for the equation $(1+z)^4 + (1-z)^4 = 0$ (where Re(z) = 0) the roots are $z = \pm i \tan \frac{\pi}{8}$ and $z = \pm i \tan \frac{3\pi}{8}$.

Question 7 continues on page 11

Question 7 (continued)

Marks

(c) (i) Given that $\sin x \ge \frac{2x}{\pi}$ for $0 < x < \frac{\pi}{2}$, explain why

$$\int_0^{\frac{\pi}{2}} e^{-\sin x} dx < \int_0^{\frac{\pi}{2}} e^{\frac{-2x}{\pi}} dx .$$

- (ii) Show that $\int_{\frac{\pi}{2}}^{\pi} e^{-\sin x} dx = \int_{0}^{\frac{\pi}{2}} e^{-\sin x} dx$.
- (iii) Hence, show that $\int_0^{\pi} e^{-\sin x} dx < \frac{\pi}{e} (e-1)$.

2

1

(a) The diagram below shows the area bounded by the curve $y = \log_e x$, the x-axis and the line x = e.

This area is rotated about the y-axis to form a solid. By considering slices perpendicular to the y-axis, find the volume of the solid of revolution formed.

(b) (i) Show that
$$\tan^{-1}\left(\frac{x}{x+1}\right) + \tan^{-1}\left(\frac{1}{2x+1}\right)$$
 is a constant for $2x+1>0$.

(ii) Hence, find the exact value of the constant.

(c) (i) Prove that
$$\frac{\cos\theta - \cos(\theta + 2\alpha)}{2\sin\alpha} = \sin(\theta + \alpha).$$
 2

(ii) Hence use mathematical induction to prove that $\sin \theta + \sin 3\theta + \sin 5\theta + \dots + \sin(2n-1)\theta = \frac{1-\cos 2n\theta}{2\sin \theta}.$

Question 8 continues on page 13

(d) The semi-ellipse given by $\frac{x^2}{9} + \frac{(y-2)^2}{4} = 1$ where $0 \le y \le 2$ is shown below:

The point (r,h) lies on the ellipse where r>0 and 0< h<2. The tangent at P makes an angle α with the positive direction of the x-axis.

(i) Show that
$$\tan \alpha = \frac{4r}{9(2-h)}$$
.

(ii) Hence, show that
$$\tan \alpha = \frac{2\sqrt{4 - (2 - h)^2}}{3(2 - h)}$$
.

(iii) Show that the acute angle between the normal at the point P and the vertical line x = r is equal to the angle between the tangent at P and the positive direction of the x-axis.

END OF PAPER

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0