

NORTH SYDNEY BOYS HIGH SCHOOL

2005 TRIAL HIGHER SCHOOL CERTIFICATE **EXAMINATION**

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write on one side of the paper (with lines) in the booklet provided
- Write using blue or black pen
- Board approved calculators may be used
- All necessary working should be shown in every question
- Each new question is to be started on a new page.

Attempt all questions

Class Teacher:

(Please tick or highlight)

- O Mr Ee
- O Mr WEiss

Student Number:

(To be used by the exam markers only.)										
Question No	1	2	3	4	5	6	7	8	Total	Total
Mark	13 15 23	14 15	15 15	12- 15	<u>14</u> 15	$\frac{12}{15}$	14	9+	4 103	100

Marks

Express $z = \frac{7+4i}{3-2i}$ in the form a+ib where a and b are real. (a)

2

Express $z = -\sqrt{3} + i$ in modulus-argument form. (b) (i)

2

Hence show that $z^7 + 64z = 0$ (ii)

2

- On an Argand diagram sketch the locus of z satisfying: (c)
 - $\arg(z-1)=\frac{2\pi}{3}$ (i)

2

Re z = |z|(ii)

2

(d)

In the Argand diagram above, $\triangle OQR$ is constructed similar to $\triangle OAP$.

Show that

(i)
$$|z_3| = |z_1||z_2|$$

$$(ii)$$
 arg $z_3 = \arg z_1 + \arg z_2$

(iii)
$$\arg z_3 = \arg z_1 + \arg z_2$$

(iii) What is the significance of these results?

Marks

(a) Find:

$$(i) \qquad \int \frac{e^x}{e^{2x} + 1} \, dx$$

(ii)
$$\int x e^{2x} dx$$

(iii)
$$\int \frac{dx}{\sqrt{2x-x^2}}$$

(b) Evaluate
$$\int_{0}^{\frac{\pi}{2}} \frac{1}{5 + 3\cos\theta} d\theta$$

(c) (i) Show that
$$\int_{0}^{a} f(x)dx = \int_{0}^{a} f(a-x) dx$$

(ii) Hence evaluate
$$\int_{0}^{\frac{\pi}{2}} \frac{\cos x - \sin x}{1 + \sin x \cos x} dx$$
 3

Question 3

- (a) (i) Prove that if the polynomial P(x) has a root of multiplicity m then P'(x) has a root of multiplicity (m-1).
 - (ii) Find the value of k so that $5x^5 3x^3 + k = 0$ has two equal roots, both positive.
- (b) If α , β , γ are the roots of $x^3 + px + q = 0$, find in terms of p and q

(i)
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$

(ii)
$$\alpha^3 + \beta^3 + \gamma^3$$

(c) Use the method of cylindrical shells to find the volume obtained when the region bounded by the curve $y = \sqrt{x}$ and the x-axis, between x = 0 and x = 1, is rotated about the line x = 1

Marks

2

- (a) (i) Show that the sum of the distances from any point P on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ to the two foci is equal to 2a.
 - (ii) If A = -2 + 3i and B = 8 + 3i verify that |z A| + |z B| = 20 is an ellipse on the Argand diagram and find its eccentricity.
- (b) Consider the function $y = \sin^{-1}(\sin x)$
 - (i) What is the range?
 - (ii) What is the period?
 - (iii) Sketch the function for $-2\pi \le x \le 2\pi$

(c)

ABC is an isosceles triangle with AC = BC and AB = b. ABCDE is a wedge shape with height DE = h and length $CD = \ell$. Triangle ABC and line DE are perpendicular to the plane of ABE as shown in the diagram.

Consider a slice of the wedge of height h and depth δy as in the diagram. The slice is parallel to the plane ABC at PQR.

- (i) Calculate the area of the triangle PQR as a function of y.
- (ii) Hence calculate the volume of the wedge.

Question 5

- (a) The tangent to the hyperbola $xy = c^2$ at the point $T\left(ct, \frac{c}{t}\right)$ meets the x and y axes at F and G respectively and the normal at T meets the line y = x at H.
 - (i) Show that the tangent at T is $x + t^2y = 2ct$.
 - (ii) Show that the normal at T is $t^3x ty = c(t^4 1)$.
 - Prove that $FH \perp HG$.
- (b) Given that the roots of the equation $x^3 + ax^2 + bx + c = 0$ form a geometric sequence, determine the relationship between a, b and c.

(a)

Marks

The diagram is a sketch of the function y = f(x)

On separate diagrams sketch:

(i)
$$y = |f(x)|$$

(ii)
$$y = f(|x|)$$

1

(iii)
$$y = \frac{1}{f(x)}$$

(iv)
$$\cos^{-1}(f(x))$$

2

(b) Let
$$z = \cos \theta + i \sin \theta$$
.

(i) Show that
$$z^n - z^{-n} = 2i \sin n\theta$$

(ii) Expand
$$(z-z^{-1})^3$$

(iii) Hence show that
$$\sin^3 \theta = \frac{1}{4} (3\sin \theta - \sin 3\theta)$$

(iv) Evaluate
$$\int_{0}^{\pi/2} \sin^3\theta \, d\theta$$

- (a) A particle moving with simple harmonic motion has a speed of 32m/s and 24m/s when its distances from the centre of motion are respectively 3 m and 4 m. Find the periodic time of the motion.
- 3

(b) A balloon rises vertically from level ground. Two projectiles are fired horizontally in the same direction from the balloon at a velocity of $80 \,\mathrm{ms}^{-1}$. The first is fired at a point $100 \,\mathrm{m}$ from the ground and the second when it has risen a further $100 \,\mathrm{m}$ from the ground. How far apart will the projectiles hit the ground? (Use $g = 10 \,\mathrm{ms}^{-2}$)

(c) If
$$y = \frac{1}{2} (e^x - e^{-x})$$

(i) Show that
$$x = \log_e \left| y + \sqrt{y^2 + 1} \right|$$

(ii) Show that
$$\left(\frac{dy}{dx}\right)^2 - y^2 = 1$$

(iii) Hence deduce that
$$\int \frac{dy}{\sqrt{y^2 + 1}} = \log_e \left| y + \sqrt{y^2 + 1} \right|$$

$$y = \log_e \left| y + \sqrt{y^2 + 1} \right|$$

(a)

ABCD is a cyclic quadrilateral.

E is a point on diagonal BD such that $\angle DAE = \angle BAC$. Prove that:

(i)
$$AB \times CD = AC \times BE$$

3

(ii)
$$BC \times DA = AC \times DE$$

2

(iii)
$$AB \times CD + BC \times DA = AC \times BD$$

2

(b) If
$$I_n = \int \sec^n x \, dx$$

(i) Prove that
$$I_n = \frac{\sec^{n-2} x \tan x}{n-1} + \frac{n-2}{n-1} I_{n-2}$$

4

(ii) Hence evaluate
$$\int_{0}^{\frac{\pi}{4}} \sec^{6} x \, dx$$