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Mathematics Extension 2

General Instructions

e Reading time — 5 minutes

o  Working time — 3 hours

o Write using black or blue pen

e Board approved calculators may be
used

o A table of standard integrals is
provided

e All necessary working should be
shown in every question

Total Marks — 100

Pages 2-5

10 marks
o Attempt Questions 1-10
o Allow about 20 minutes for this section

Section II Pages 5~11

90 marks
e Attempt Questions 11-16
e Allow about 2 hours 40 minutes for this section

Assessable Outcomes: A student

O1 | applies graphical methods to various functions & solves polynomials.

O2 | applies a wide variety of techniques involving integration.

O3 | applies problem solving techniques with complex numbers.

04 | solves conics & determines volumes by methods of integration.

OS5 | solves restricted motion problems in mechanics & extension 1 harder topics.

TIE ANSWER SHEET TO THE QUESTION PAPER AND YOUR WRITING PAPER.

HAND UP IN ONE TIED BUNDLE.
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Section I

10 marks

Mathematics Extension 2 HSC Trial

Attempt Questions 1-10
Allow about 20 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1 The equation of the tangentto  xy® + 2y = 4 at the point (2, 1) is

(A)
(B)
©
)

X+ 8y = 10
x-8y =10
Xx+8& = =10
x—8y = —10

2 If z=1-+/3i=2 (cos (:Sf) + isin (—3_71:))’ then what is the value of z2%1 9

(A)
(B)
©)
D)

221

- 221
(224)i
—(2%1)i

3  When the circle |z~ (3+4i)|=5 is sketched on the Argand Diagram the
maximum value of |z| occurs when z lies at the end of the diameter that passes
through the centre and the origin.

What is the maximum value of |z|?

(A)
)]
(©)
(D)

V5
5
10

V10
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4 One rational root exists for P(x) = 2x3 — 3x% + 4x + 3 such that P( 72—1) = 0.

When P(x) is fully factorised over the complex field, what is the result?

(A)  (2x+1)(x%—2x+3)

B)  @x+DE-1+iV)(x+1+iVD)
©  Qx+DE+1-VD(x+1+ VD)
D) x+DE—1-ivVD(x—1+iVD)

5  The cubic equation 2y® — 9y? + 12y + k = 0 has two equal roots.
What are the possible values for % ?

(A) —4 and ~5

®) —4 and 5
(C) 4 and ~5
(D) 4 and 5

Which of the following graphs is the locus of the point P representing the complex number
z moving in an Argand diagram such that fz - 2i[ =2+Imz?

(A) a circle
(B) a parabola
© a hyperbola

(D)  astraight line
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7 What is the area bounded by the x axis and the curve v = x(16 + x2)™%5  between
x=0 and x= 37

(A) 3 units®

(B) log,3 units
(C) log, e units?
(D) log.1 units?

2

8  For constant %, the equation e?* = kyx  has exactly one solution when there is a
common point as well as a common tangent.

What is the value of £?

(a) 1
B e
©  2ve
D) e

9  ABCD is acyclic quadrilateral. ) and P are external points such that ¥ lies on the line
PR and § is the intersection of PR and QC. Assume that PR bisects angle APD and
Q7Y bisects angle DQC,

Q

NOT TO SCALE

Which of the following is NOT true?

(A) <QYR isaright angle

(B) AQRS is always isosceles

(C) ABCD is always akite

(D) Y is always the midpoint of RS



Mathematics Extension 2 HSC Trial

10 = = > >

In the Argand diagram below vectors OP, OQ, OR, OS represent the complex
numbers p, q, 7, s respectively where PORS is a square.

yA P

The statement g — s = i(p—r) about lengths of the square is

(A)  always true

(B) nevertrue

(C)  sometimes true

(D)  notable to be accurately determined
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Section II
90 marks

Attempt Questions 11-16
Allow about 2 hours 40 minutes for this section

All necessary working should be shown in every question.

Question 11 (15 marks) Use a SEPARATE writing page,

x+1 1

a i . v g s —rre—_— ——
(8) () Find a primitive function for each of Pizris and 24245 "

X

(i) Hence, or otherwise, find f -
x“t2x4-5

dx
x(x+2)

3
(b) Evaluate f )

(c) () Express (secx tanx)* asaproduct involving sec?x .

T
y T 4 4 . 12
(i)  Show that f o Sec xtan X dx a5

(d) Use the z-substitution method with = tang to find the value of

T
5 ae

0 1+sinB6+cosg

T
(6) () Showthat U, = 222y o if U, = |2 sin™x.
n n—2 n 0

n

(i)  Hence, or otherwise, prove that k=32 when U, - U, = % .
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Question 12 (15 marks) Use a SEPARATE writing page,

. 3
(@ (1) Write ey + x—2 as asingle algebraic fraction.

. 3
=" 4 4
(i) Sketch y iz X 2.

. . . X
(iii) Hence, or otherwise, solve the inequality — <0.

(b) Therootsof x*+2x%2~3x~1 =0 are q, B and y.

. . [#4
Find an equation whose roots are —f- — and —

(¢) The points, P(cp, cp™) and Q(cq, cqg™1), lie on the rectangular hyperbola
xy = ¢, The chord PQ meets the x axis at C. O is the centre of the hyperbola and
R is the midpoint of PQ.
(i)  Draw a sketch showing all the information.
(ii) Find the equation of chord PQ.
(iii) Find the co-ordinates of C.

(iv) Find the co-ordinates of R.

(v) Showthat OR=RC.
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Question 13 (15 marks) Use a SEPARATE writing page,

(2) Thehyperbola, H has the Cartesian equation 5x2 — 492 = 20.

(b)

P is an arbitrary point, ( 2sec8, V5 tan@).

(1)
(i)
(i)
(iv)
(v}

(v)

(vii)

Find the eccentricity of H and state the co-ordinates of its foci, S and S".
State the equations of the directrices and both asymptotes for 4.

Sketch the curve, clearly showing all of the above features.

Demonstrate that P( 2sec®, V5 tand ) lies on H.

Show that the tangent to H at P is

xsect ytang 1
2 V5 '

The tangent at P cuts the asymptotes at L and M.
Prove that LP = PM.
O is the origin.

Show that the area of AOLM is independent of the position P on H.

The function y =fx) is denoted by fix) = x3 — 6x.

(@
(ii)

Sketch the graph of y = |f(x)| = [x3 ~ 6x | on a separate set of axes.

Sketch the graph of y = f—;)— = (x3 — 6x )™! on a separate set of axes.
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Question 14 (15 marks) Use a SEPARATE writing page.

(a)

(b)

(c)

Consider the region bounded by the two curves y =3 —x? and y=-2x.
Suppose two vertical lines, one unit apart, intersect the given region.
(i)  The vertical lines are x=x; and x=x, + 1.

Find the value/s of x; so that the area enclosed by the two vertical lines and
the two curves is a maximuin.

. R . 11 ,
(i) Show that this enclosed area is 35 units?.

Justify that this area is the maximum.

The area bounded by the y axis, the line y =1 and y =sinx is revolved about the
liney=1.

Using a slicing technique, find the volume of the solid of revolution formed
between x=0 and x=§.

Use the method of cylindrical shells to find the volume of the solid formed when
the area enclosed by y = (x — 2)* and y =4 is rotated about the y axis.



(a)

(b)

(©

Mathematies Extension 2 HSC Tvial

Question 15 (15 marks) Use a SEPARATE writing page.

(i) Factorise z5+1 overthe real field. _ 1
(iiy Listtherootsof z°+1=0 in rcisd form. 1
(i) Deduce that 2cos% + 2cosis’?- ~1=0. 2

(i) Using the tan (A — B) expansion, show that if mx = tan™Q — tan-1v

then mx= tan‘l(ff;—u). 1

. _ . 1 a bv+c
(i) Showthat ¢a=1, b=—landc=0 if - - + s 1
A particle movesina straight line against a resistance numerically
equal to m(v + v3) where v isits velocity. Initially the particle is at the origin
and is travelling with velocity Q, where Q > 0. Assume ¥ = —m(v + v3).
()  Show that the displacement x in terms of v is x= -;— tan~1( I%%)' 3
. _ 1 G214+ . .
(i)  Provethat t = P~ log, (v—w-—2 o Qz)) where ¢ is the time elapsed. 3
(i)  Find an expression for the square of the velocity as a function of time. 1
(iv) By finding the limiting values of velocity and displacement, explain why
this particle eventually slows down and show that this occurs near a point
where Q = tan(mx). 2

~10-
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Question 16 (15 marks) Use a SEPARATE writing page

(a) A sequence of polynomials, called the Bernoulli Polynomials, is defined by the
three conditions:-

1. By(x)=1
2 B = 1o (5, () = nByyd)

3. [ By (dx = 0 if n >1

(i) Showthat B;(x) = x —i— .

(@ I By (tl) — By (x) = mx™ ' and  g(x) = Buyy(x+1) — Bpus(®),
prove that
g'(x) = @+Dnx""1 |
Hence show g(x) = (n+1)x™ + C, where C is a constant.

(iil) Use the method of mathematical induction to prove that

By (+1) ~ By (¥) = mx™ 1 if n 1.

(b) (1) By squaring, or otherwise, show that for k =0,
2k+3 > 2vk+2+vk+1.

(i) By decomposing 2k + 3 and factorising 2vk+ 2 Vk+ 1 —2(k + 1) show
that for k =1,

\/% > 2(WKF2 - VKF1).

(i) Hence, or otherwise, show forn =1,

t= > 2(VIFI-0).

End of paper

- 11—



