

Student	
Number:	
Class:	

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION 2013

MATHEMATICS EXTENSION 2

General Instructions:

- · Reading Time: 5 minutes.
- · Working Time: 3 hours.
- · Write in black pen.
- · Board approved calculators & templates may be used
- · A Standard Integral Sheet is provided.
- In Question 11 16, show all relevant mathematical reasoning and/or calculations.
- Marks may not be awarded for careless or badly arranged working.

Total Marks 100

Section I: 10 marks

- · Attempt Question 1 10.
- · Answer on the Multiple Choice answer sheet provided.
- · Allow about 15 minutes for this section.

Section II: 90 Marks

- Attempt Question 11 16
- Answer on lined paper provided. Start a new page for each new question.
- · Allow about 2 hours & 45 minutes for this section.

The answers to all questions are to be returned in separate *stapled* bundles clearly labelled Question 11, Question 12, etc. Each question must show your Candidate Number.

Section I 10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

- 1 Let z = 1 + i. What is the value of z^{12} ?
 - (A) 64
 - (B) -64
 - (C) 64i
 - (D) 64*i*
- Given $f(x) = x^2(x-1)$. Which of the following best represents the graph of $y = \sqrt{f(x)}$?

- Given $2x^2 + xy + 2y^2 = 30$, what are the coordinates of one of the vertical tangents?
 - (A)(-1,4)
 - (B)(4,-1)
 - (C)(-1,-4)
 - (D)(1,-4)
- What is the equation of the chord of contact of tangents from (2, 1) to the hyperbola $\frac{x^2}{9} \frac{y^2}{4} = 1?$
 - (A) $\frac{2x}{9} \frac{y}{4} = 1$
 - (B) $\frac{2x}{9} + \frac{y}{4} = 1$
 - (C) $\frac{x}{9} \frac{y}{2} = 1$
 - (D) $\frac{x}{9} + \frac{y}{4} = 1$
- Given $3x^3 2x + 5 = 0$ has roots α , β and γ , what is the equation with roots $\alpha + 1$, $\beta + 1$ and $\gamma + 1$?
 - (A) $3x^3 9x^2 + 7x + 6 = 0$
 - (B) $3x^3 + 9x^2 + 7x + 6 = 0$
 - (C) $3x^3 9x^2 + 7x + 4 = 0$
 - (D) $3x^3 + 9x^2 + 7x + 4 = 0$

Which of the following is the correct expression for the integral $\int \frac{dx}{4+\sin^2 x}$?

(A)
$$\frac{1}{2\sqrt{5}}\tan^{-1}\left(\frac{5}{4}\tan x\right) + C$$

(B)
$$2\sqrt{5} \tan^{-1} \left(\frac{5}{4} \tan x \right) + C$$

(C)
$$\frac{1}{2\sqrt{5}}\tan^{-1}\left(\frac{\sqrt{5}}{2}\tan x\right) + C$$

(D)
$$2\sqrt{5} \tan^{-1} \left(\frac{\sqrt{5}}{2} \tan x \right) + C$$

- Given $3x^3 + 6x 5 = 0$ has roots α , β and γ , what is the value of $\alpha^3 + \beta^3 + \gamma^3$?
 - (A) 5
 - (B) 9
 - (C) 15
 - (D) -1
- The equation of motion of a particle falling with velocity v m/s is given by $\ddot{x} = 10 \frac{v}{2}$. Which of the following is the value of the terminal velocity?
 - (A) 5
 - (B) 15
 - (C) 20
 - (D) $\sqrt{20}$

A bob P of mass m kg is suspended from a fixed point A by a string of length l metres, and acceleration due to gravity g. P describes a horizontal circle with uniform angular velocity ω rad/s.

Which of the following expressions represents the tension in the string?

- (A) $ml\omega$
- (B) $ml\omega^2$
- (C) $mgl\omega$
- (D) $mgl\omega^2$
- Which of the following is the correct expression for the integral $\int e^{\alpha x} \sin \beta x \, dx$?

(A)
$$\frac{e^{\alpha x}}{\alpha^2 + \beta^2} [\beta \sin \beta x + \alpha \cos \beta x] + C$$

(B)
$$\frac{e^{\alpha x}}{\alpha^2 + \beta^2} [\beta \sin \beta x - \alpha \cos \beta x] + C$$

(C)
$$\frac{e^{\alpha x}}{\alpha^2 + \beta^2} [\alpha \sin \beta x + \beta \cos \beta x] + C$$

(D)
$$\frac{e^{\alpha x}}{\alpha^2 + \beta^2} \left[\alpha \sin \beta x - \beta \cos \beta x \right] + C$$

Section II

90 marks

Attempt Questions 11–16.

Allow about 2 hours and 45 minutes for this section.

In Questions 11–16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a NEW page.

(a) |z| < 1 and $z = \cos \theta + i \sin \theta$, where $-\pi < \theta \le \pi$.

(i) Show $1+z=2\cos\frac{\theta}{2}\left(\cos\frac{\theta}{2}+i\sin\frac{\theta}{2}\right)$.

(ii) z_1 and z_2 are complex numbers such that $|z_1| = |z_2| = 1$. If z_1 and z_2 have arguments 2 α and β respectively, where $-\pi < \alpha \le \pi$ and $-\pi < \beta \le \pi$, show that $\frac{z_1 + z_1 z_2}{z_1 + 1}$ has

modulus $\frac{\cos\frac{\beta}{2}}{\cos\frac{\alpha}{2}}$ and Argument $\frac{\alpha+\beta}{2}$.

- (iii) If $|z_1| = |z_2| = 1$ and $\frac{z_1 + z_1 z_2}{z_1 + 1} = 2i$ find z_1 and z_2 in the form x + iy where x and y are real rational numbers.
- (b) Shade the region $-\frac{\pi}{4} \le \text{Arg } z \le \frac{\pi}{4}$ and $|z| \le 3$.

Question 11 (c) is continued over the page.

(c)

f(x) is an even function such that $f(x) \ge 0$ for $-a \le x \le a$.

The region bounded by y = f(x), the x-axis, and the ordinates x = -a and x = a has area A. The region is rotated about the line x = b where b > a > 0.

(i) Using the method of cylindrical shells show that the volume V of rotation is $2\pi bA$.

(ii)

The region shown with circular ends is rotated about x = 10 to form a circular sealing ring. Find the volume of revolution.

2

End of Question 11.

Question 12 (15 marks) Start a NEW page.

- (a) Graph $y = \frac{x}{(x+4)(x+2)}$ showing all intercepts with the coordinate axes and all asymptotes.
- (b) The region bounded by $y = \frac{x}{(x+4)(x+2)}$, the x-axis and x = 1 is rotated around the y-axis.
 - (i) Find the values A, B and C such that $\frac{x^2}{(x+4)(x+2)} = A + \frac{B}{x+2} + \frac{C}{x+4}.$
 - (ii) Using the method of cylindrical shells show that the volume V of revolution is given by $V = 2\pi \int_0^1 \frac{x^2 dx}{(x+4)(x+2)}$, hence find the exact value of the volume of revolution.

(c) F weight

A car of mass 2000 kg travels around a curve of radius 150 m at a speed of 110km/h. 4 The car experiences a lateral resistance force F of 0.22 × normal force, N, as shown.

By resolving the forces vertically and horizontally find the minimum angle θ (to the nearest minute) for the car to negotiate the curve. (Assume acceleration due to gravity of 10 m/s²).

End of Question 12.

Question 13 (15 marks) Start a NEW page.

(a) (i) Show
$$\int_{-a}^{0} f(x)dx = \int_{0}^{a} f(-x)dx$$

(ii) Deduce
$$\int_{-a}^{a} f(x)dx = \int_{0}^{a} [f(x) + f(-x)] dx$$

(iii) Hence evaluate
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{dx}{(1+\sin x)^2}$$

- (b) A shape is defined as $r = \frac{9}{5 + 4\cos\theta}$ where *r* is the distance from origin and θ is the angle anticlockwise from the positive *x*-axis.
 - (i) Using the notation y

find the equivalent Cartesian equation and show that the shape is an ellipse translated.

- (ii) State the minor axis, major axis and location of the foci.
- (iii) The area A enclosed by the shape is given by $A = \int_0^{2\pi} \frac{1}{2} r^2 d\theta$.

Using (b)(i) and(b)(ii) evaluate $\int_0^{2\pi} \frac{d\theta}{\left(5 + 4\cos\theta\right)^2}.$

End of Question 13.

Question 14 (15 marks) Start a NEW page.

(a) (i) Find the coordinates of the intersection of the curves $y^2 = 8x$ and $x^2 = 8y$.

(ii) The base of a solid is in the region bounded by the curves $y^2 = 8x$ and $x^2 = 8y$, and its cross sections by planes perpendicular to the x-axis are semicircles. Find the volume of the solid.

1

3

(b)

A liquid particle of mass m kg is projected from the ground and hits a vertical wall 20m from the point of projection as shown.

(i) The equations of motion before the particle hits the wall are

x = 4t and $y = 30t - 5t^2$

where t is time in seconds. Show that the particle hits the wall 25 m above the ground with a downwards velocity of 20 m/s.

- (ii) After hitting the wall the particle slides down the wall with a resistance force equal to $0.04mv^2$.
 - (α) If acceleration due to gravity is 10 m/s² show that the velocity on return to the ground is approximately 16.44 m/s.
 - (β) Find the total time for the particle to return to the ground. Give your answer to two decimal places.

End of Question 14.

Question 15 (15 marks) Start a NEW page.

The hyperbola $xy = c^2$ meets the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at $P\left(ct_1, \frac{c}{t_1}\right)$ and $Q\left(ct_2, \frac{c}{t_2}\right)$ where $t_1 > t_2 > 0$. Tangents to the hyperbola at P and Q meet at T, while tangents to the ellipse at P and Q meet at V.

- (i) Show the above information on a sketch.
- (ii) Show that the parameter of point $\left(ct, \frac{c}{t}\right)$ which lies on the intersection of $xy = c^2 \text{ and } \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ satisfies the equation } b^2c^2t^4 a^2b^2t^2 + a^2c^2 = 0 .$

1

3

2

3

- (iii) Given the equation of the tangent to the hyperbola at $\left(ct, \frac{c}{t}\right)$ is $x + t^2y = 2ct$, show 2 that the coordinates of T are $\left(\frac{2ct_1t_2}{t_1 + t_2}, \frac{2c}{t_1 + t_2}\right)$.
- (iv) Given that the equation of the tangent to the ellipse at (x_1, y_1) is $b^2 x_1 x + a^2 y_1 y = a^2 b^2$, 2 show that the coordinates of V are $\left(\frac{a^2}{c(t_1 + t_2)}, \frac{b^2 t_1 t_2}{c(t_1 + t_2)}\right)$.
- (v) Show that the line TV passes through the origin.
- (vi)Point V lies at a focus of the hyperbola.
 - (α) Show that the ellipse is a circle.
 - (β) Find the radius of the circle in terms of c.

End of Question 15.

Question 16 (15 marks) Start a NEW page.

(a)
$$I_n = \int_0^{2\pi} (1 + \cos \theta)^n d\theta \text{ for } n \ge 0.$$

(i) Show
$$I_{n+1} = \frac{2n+1}{n+1}I_n$$
.

(ii) Find
$$I_3$$
.

ABC is a triangle inscribed in a circle. L, M and N are the feet of the perpendiculars from P to AB, AC and BC respectively.

(i) Copy the diagram.
(ii) Show P, M, A and L are concyclic points.
(iii) Show P, C, N and M are concyclic points.
(iv) Show that L, M and N are collinear.

End of paper.