HURLSTONE AGRICULTURAL HIGH SCHOOL

YEAR 12 MATHEMATICS EXTENSION 2

2005 HSC COURSE

TRIAL HSC ~ASSESSMENT TASK 4

Examiners ~ J. Dillon and G. Rawson

GENERAL INSTRUCTIONS

- READING TIME 5 MINUTES.
- WORKING TIME THREE HOURS.
- ATTEMPT ALL QUESTIONS.
- OUESTIONS ARE OF EQUAL VALUE.
- ALL NECESSARY WORKING SHOULD BE SHOWN IN EVERY QUESTION.
- THIS PAPER CONTAINS EIGHT (8) OUESTIONS.
- TOTAL MARKS 120 MARKS

- Marks may not be awarded for Careless or badly arranged work.
- BOARD APPROVED CALCULATORS MAY BE USED.
- A TABLE OF INTEGRALS IS SUPPLIED.
- EACH QUESTION IS TO BE STARTED IN A NEW EXAMINATION BOOKLET.
- THIS ASSESSMENT TASK MUST NOT BE REMOVED FROM THE EXAMINATION ROOM.

STUDENT NAME / NUMBER:		
	**.	
TEACHER:		 ·.

QUESTION 1: (USE A SEPARATE ANSWER BOOKLET)

Marks

(a) Find:

(i)
$$\int \frac{1}{x \ln x} dx$$

2

(ii)
$$\int \frac{x}{x^2 + 2x + 5} \, dx$$

3

(b) Evaluate, using integration by parts,
$$\int_{0}^{\frac{\pi}{2}} x \cos x \, dx$$

2

(c) Evaluate, using partial fractions,
$$\int_{1}^{3} \frac{dx}{x^{2} + 2x}$$
.

3

(d) The integral
$$I_n$$
 is defined by $I_n = \int_0^1 x^n e^{-x} dx$.

Y A CAR A TRAIN CONSCIANCE BEEN THE TO

(i) Show that
$$I_n = nI_{n-1} - e^{-1}$$
.

2

(ii) Hence, show that
$$I_3 = 6 - 16e^{-1}$$
.

2

QUESTION 2: (USE A SEPARATE ANSWER BOOKLET)

Marks

- (a) Given $z = \sqrt{6} \sqrt{2}i$, find:
 - (i) $Re(z^2)$;
 - (ii) |z|;
 - (iii) $\arg z$;
 - (iv) z^4 in the form x + iy.
- (b) The equations $|z 8 6i| = 2\sqrt{10}$ and $\arg z = \tan^{-1} 2$ both represent loci on the Argand plane.
 - (i) Write down the Cartesian equations of the loci, and hence show that the points of intersection of the loci are 2 + 4i and 6 + 12i.
 - (ii) Sketch both loci on the same diagram, showing their points of intersection. 2
 (You need not show the intercepts with the axes.)

(c)

The diagram above shows the fixed points A, B and C in the Argand plane, where AB = BC, $\angle ABC = \frac{\pi}{2}$, and A, B and C are in anticlockwise order. The point A represents the complex number $z_1 = 2$ and the point B represents the complex number $z_2 = 3 + \sqrt{5}i$.

- (i) Find the complex number z_3 represented by the point C.
- (ii) D is the point on the Argand plane such that ABCD is a square. 2 Find the complex number z_4 represented by D.

- (a) Show that the equation of the tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ at the point $P(a \sec \theta, b \tan \theta)$ is $\frac{x \sec \theta}{a} \frac{y \tan \theta}{b} = 1$.
 - (ii) Show that the equation of the normal at P is $\frac{ax}{\sec \theta} + \frac{by}{\tan \theta} = a^2 + b^2$

- (i) Show that the equation of the chord of contact PQ is $\frac{xx_0}{16} + \frac{yy_0}{9} = 1$.

 (You may assume that the tangent at P has equation $\frac{xx_1}{16} + \frac{yy_1}{9} = 1$, and similarly for Q)
- (ii) If the chord PQ touches the circle $x^2 + y^2 = 9$, then by considering the distance of the chord from the origin, or otherwise, show that the point $T(x_0, y_0)$ satisfies $\frac{9x_0^2}{256} + \frac{y_0^2}{9} = 1$.

HAHS Extension 2/Trial HSC 2005

QUESTION 4: (USE A SEPARATE ANSWER BOOKLET)

MARKS

- (a) (i) Let P(x) be a polynomial of degree 4 with a zero of multiplicity 3. Show that P'(x) has a zero of multiplicity 2.
 - (ii) Hence, or otherwise, find all zeros of $P(x) = 8x^4 25x^3 + 27x^2 11x + 1$, given that it has a zero of multiplicity 3.
 - (iii) Sketch $y = 8x^4 25x^3 + 27x^2 11x + 1$, clearly showing the intercepts on the coordinate axes. You do not need to give the coordinates of turning points or points of inflection.
- (b) (i) Show that the general solution of the equation $\cos 5\theta = -1$ is given by $\theta = (2n+1)\frac{\pi}{5}, n = 0, \pm 1, \pm 2, \dots$

Hence, solve the equation $\cos 5\theta = -1$, for $0 \le \theta \le 2\pi$.

- (ii) Use De Moirve's Theorem to show that $\cos 5\theta = 16\cos^5 \theta 20\cos^3 \theta + 5\cos \theta.$
- (iii) Find the exact trigonometric roots of the equation $16x^5 20x^3 + 5x + 1 = 0$
- (iv) Hence, find the exact values of $\cos \frac{\pi}{5} + \cos \frac{3\pi}{5}$ and $\cos \frac{\pi}{5} \times \cos \frac{3\pi}{5}$ and factorise $16x^5 20x^3 + 5x + 1 = 0$ into irreducible factors over the rational numbers.

QUESTION 5: (USE A SEPARATE ANSWER BOOKLET)

Marks

(a) In the diagram below, the curve $y = \frac{2x}{1+x^2}$ is sketched.

(i) Find the coordinates of the turning points A and B.

(ii) Find the coordinates of the inflection points X and X.

3

(b) Draw separate sketches of:

$$(i) y = \frac{|2x|}{1+x^2}$$

$$y = \frac{1+x^2}{2x} \qquad z \qquad \frac{1+x^2}{2x}$$

(iii)
$$y^2 = \frac{2x}{1+x^2}$$

(iv)
$$y = \log_e\left(\frac{2x}{1+x^2}\right)$$

QUESTION 5 CONTINUES ON THE NEXT PAGE

1

QUESTION 4: (USE A SEPARATE ANSWER BOOKLET)

Marks

- Let P(x) be a polynomial of degree 4 with a zero of multiplicity 3. (i) (a) Show that P'(x) has a zero of multiplicity 2.
 - 2
 - Hence, or otherwise, find all zeros of $P(x) = 8x^4 25x^3 + 27x^2 11x + 1$, 2 (ii) given that it has a zero of multiplicity 3.
 - Sketch $y = 8x^4 25x^3 + 27x^2 11x + 1$, clearly showing the intercepts 1 (iii) on the coordinate axes. You do not need to give the coordinates of turning points or points of inflection.
- Show that the general solution of the equation $\cos 5\theta = -1$ is given by (i) (b)
 - $\theta = (2n+1)\frac{\pi}{5}, n = 0, \pm 1, \pm 2, \dots$

Hence, solve the equation $\cos 5\theta = -1$, for $0 \le \theta \le 2\pi$.

Use De Moirve's Theorem to show that (ii) $\cos 5\theta = 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta.$ 3

Find the exact trigonometric roots of the equation (iii) $16x^5 - 20x^3 + 5x + 1 = 0$

2

3

Hence, find the exact values of $\cos \frac{\pi}{5} + \cos \frac{3\pi}{5}$ and $\cos \frac{\pi}{5} \times \cos \frac{3\pi}{5}$ (iv) and factorise $16x^5 - 20x^3 + 5x + 1 = 0$ into irreducible factors over the rational numbers.

- (c) (i) Show that the equation $kx^3 + (k-2)x = 0$ can be written in the form $\frac{2x}{1+x^2} = kx$.
 - (ii) Using a graphical approach based on the curve $y = \frac{2x}{1+x^2}$, or otherwise, find the real values of k for which the equation $kx^3 + (k-2)x = 0$ has exactly one real root.

QUESTION 6: (USE A SEPARATE ANSWER BOOKLET)

Marks

(a) A Mini-League football has a volume the same as the volume generated

3

by rotating the region inside the ellipse $\frac{x^2}{20} + \frac{y^2}{15} = 1$ about the x-axis.

Find the volume of this football.

2 anz sy

(b) The area bounded by the curve $y = 2x - x^2$ and the x-axis is rotated through $\mathbb{Z} \mathcal{L} \mathcal{I}$ 180° about the line x = 1.

(i) Show that the volume, ΔV , of a representative horizontal slice of width Δy is given by

 $\Delta V = \pi (x-1)^2 \Delta y$

2

Hence show that the volume of the solid of revolution is given by
$$V = \lim_{\Delta y \to 0} \sum_{v=0}^{1} \pi (1-y) \Delta y$$

Hence, find the volume of the solid of revolution

(ii)

(iii)

The region shown below, bounded by the curve $y = \frac{x^2}{x^2+1}$, the x-axis and (c) the line x = 2, is rotated about the line x = 4.

Using the method of cylindrical shells, show that the volume ΔV of a 3 (i) Shell distant x from the origin and with thickness Δx is given by

$$\Delta V = 2\pi (4-x)(1-\frac{1}{1+x^2})\Delta x$$

(ii)

(a)

In the diagram above, AB = AD = AX and $XP \perp DC$.

Prove that $\angle DBX = 90^{\circ}$ (i)

2

Hence, or otherwise, prove that AB = AP. (ii)

3

Show that $a^2 + b^2 > 2ab$, where a and b are distinct positive real numbers. (i) (b)

 $\Rightarrow ab + bc + ca$, where a, b and c are distinct Hence show that $a^2 + b^2 + c^2$ (ii) positive real numbers.

Hence, or otherwise, prove that
$$\frac{a^2b^2 + b^2c^2 + c^2a^2}{a + b + c} > abc, (newc)$$
where a, b and c are distinct positive real numbers.

(c)

(ijii)

A sequence, T_n , is such that $T_1 = 3$, $T_2 = 5$ and $T_{n+2} = 4T_{n+1} - 3T_n$. Prove by mathematical induction that $T_n = 3^{n-1} + 2$.

Marks

(a) Show that $\int_{n}^{2n} \frac{dx}{\sqrt{x}} = 2\sqrt{n} \left(\sqrt{2} - 1 \right).$

2

In the diagram above, the graph of $y = \frac{1}{\sqrt{x}}$ has been drawn, and n upper and lower rectangles have been constructed between x = n and x = 2n, each of width 1 unit.

Let
$$S_n = \frac{1}{\sqrt{n+1}} + \frac{1}{\sqrt{n+2}} + \frac{1}{\sqrt{n+3}} + \dots + \frac{1}{\sqrt{2n}}$$
.

(α) By considering the sums of areas of upper and lower rectangles, show that:

$$2\sqrt{n}(\sqrt{2}-1)+\frac{1-\sqrt{2}}{\sqrt{2n}} < S_n < 2\sqrt{n}(\sqrt{2}-1)$$

(β) Hence find, correct to four decimal places,

$$\frac{1}{\sqrt{10^8 + 1}} + \frac{1}{\sqrt{10^8 + 2}} + \frac{1}{\sqrt{10^8 + 3}} + \dots + \frac{1}{\sqrt{2 \times 10^8}}$$

1

In the diagram, \mathcal{T} is a circle with exterior point T. From T, tangents are drawn to the points A and B on \mathcal{T} and a line TC is drawn, meeting the circle at C. The point D is the point on \mathcal{T} such that BD is parallel to TC. The line TC cuts the line AB at F and the line AD at E.

Copy or trace the diagram.

(i)	Prove that ΔTFA is similar to ΔTAE .	3
	Deduce that $TE.TF = TB^2$.	2
(ii)	Deduce that TEST = ID : 100 in the second of	_
(iii)	Show that $\triangle EBT$ is similar to $\triangle BFT$.	2
(iv)	Prove that $\triangle DEB$ is isosceles.	1

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1} + C, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x + C, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} + C, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax + C, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax + C \,, \ a \neq 0$$

$$\int \sec^2 ax \ dx = \frac{1}{a} \tan ax + C \,, \ a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax + C \,, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + C, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a} + C, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right) + C, \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} \, dx = \ln \left(x + \sqrt{x^2 + a^2} \right) + C$$

NOTE: $\ln x = \log_e x$, x > 0