## HORNSBY GIRLS HIGH SCHOOL



# Mathematics Extension 2

## Year 12 Higher School Certificate Trial Examination Term 3 2013

#### STUDENT NUMBER:

#### **General Instructions**

- Reading Time 5 minutes
- Working Time 3 hours
- Write using black or blue pen
  Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11 16, show relevant mathematical reasoning and/or calculations
- Marks may be deducted for untidy and poorly arranged work
- Do not use correction fluid or tape
- Do not remove this paper from the examination

## Total marks - 100

**Section I** Pages 3-6

10 marks

Attempt Questions 1 - 10

Answer on the Objective Response Answer Sheet provided

**Section II** Pages 7 - 15

90 marks

Attempt Questions 11 - 16.

Start each question in a new writing booklet.

Write your student number on every writing booklet.

| Question | 1-10 | 11  | 12  | 13  | 14  | 15  | 16  | Total |
|----------|------|-----|-----|-----|-----|-----|-----|-------|
| Total    |      |     |     |     |     |     |     |       |
|          | /10  | /15 | /15 | /15 | /15 | /15 | /15 | /100  |

**BLANK PAGE** 

## Section I

## 10 marks

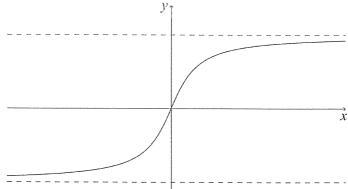
## Attempt Questions 1 - 10

## Allow about 15 minutes for this section

Use the Objective Response answer sheet for Questions 1-10

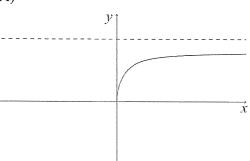
- Let z = 3 + 2i and w = 2 3i. What is the value of  $3\overline{z} 2w$ ?
  - (A) 5
  - (B) -5
  - (C) 5+12i
  - (D) 5-12i
- The equation  $x^2 + 2y^2 2xy + x = 8$  defines y implicitly as a function of x.
  - What is the value of  $\frac{dy}{dx}$  at the point (3,2)?
  - (A)  $\frac{1}{4}$
  - (B)  $-\frac{1}{4}$
  - (C)  $\frac{3}{2}$
  - (D)  $-\frac{3}{2}$
- 3 Let  $z = \cos \theta + i \sin \theta$ . Which of the following is equal to  $z^3$ ?
  - (A)  $\cos^3 \theta + i \sin^3 \theta$
  - (B)  $\cos^3 \theta i \sin^3 \theta$
  - (C)  $\cos 3\theta + i \sin 3\theta$
  - (D)  $\cos 3\theta i \sin 3\theta$

4 The graph of y = f(x) is shown below.

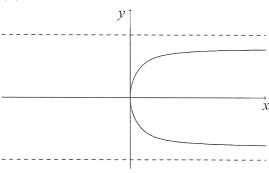


Which of the following graphs best represents  $y^2 = f(x)$ ?

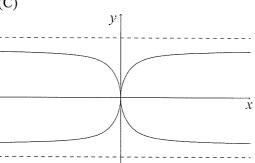
(A)



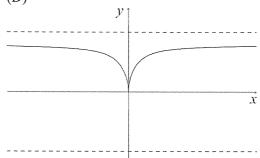
(B)



(C)



(D)



- The roots of the polynomial  $4x^3 + 4x 5 = 0$  are  $\alpha$ ,  $\beta$  and  $\gamma$ . What is the value of  $(\alpha + \beta - 3\gamma)(\beta + \gamma - 3\alpha)(\alpha + \gamma - 3\beta)$ ?
  - (A) -80
  - (B) -16
  - (C) 16
  - (D) 80

- A mass of 5 kg moves in a horizontal circle of radius 1.5 metres at a uniform angular speed of 4 radians per second. What is the centripetal force required for this motion?
  - (A) 40N
  - (B) 80N
  - (C) 120N
  - (D) 160N
- Which of the following is a focus of the hyperbola  $\frac{x^2}{11} \frac{y^2}{25} = -1$ ?
  - (A) (0,5)
  - (B) (5,0)
  - (C) (6,0)
  - (D) (0,6)
- 8 If  $x^3 11x^2 + 40x k = (x 4)^2 \cdot P(x)$ , what is the value of k?
  - (A) 16
  - (B) 32
  - (C)48
  - (D) 64
- The region bounded by the curve  $y = x^2$ , the line x = 4 and the x-axis is rotated about the line x = 4. Which integral represents the volume of the solid?

(A) 
$$2\pi \int_0^4 (4-x)x^2 dx$$

(B) 
$$\pi \int_0^{16} (4-x)x^2 dx$$

(C) 
$$2\pi \int_0^4 (4-x)^2 dx$$

(D) 
$$\pi \int_0^{16} (4-x)^2 dx$$

10 Without evaluating the integrals, which of the following integrals is equal to zero?

(A) 
$$\int_{-1}^{1} e^{-x} \tan^{-1}(x^2) dx$$

(B) 
$$\int_{-1}^{1} \frac{x^2 \sin x}{x^2 + 5} dx$$

(C) 
$$\int_{-1}^{1} \sqrt{x^2 + e^x} dx$$

(D) 
$$\int_{-1}^{1} x^3 \sin^{-1} x \, dx$$

**End of Section I** 

## **Section II**

#### 90 marks

## Attempt Questions 11 – 16

## Allow about 2 hours and 45 minutes for this section

Answer each question in a new writing booklet. Extra writing booklets are available.

In Questions 11 – 16, your responses should include relevant mathematical reasoning and/or calculations

Question 11 (15 marks)

Start a new writing booklet

(a) (i) Using the substitution 
$$x = a - u$$
, show that  $\int_0^a f(x) dx = \int_0^a f(a - x) dx$ .

(ii) Hence evaluate 
$$\int_0^2 x\sqrt{2-x}dx$$
.

(b) Express 
$$\frac{3\sqrt{3}+i}{\sqrt{3}-i}$$
 in the form  $x+iy$ , where x and y are real.

(c) Find 
$$\int e^x \cos x \, dx$$
.

(d) Find the square roots of 
$$1+\sqrt{3}i$$
.

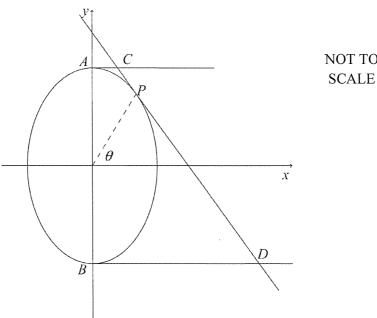
(e) Given that 
$$\alpha$$
,  $\beta$  and  $\gamma$  are the roots of  $x^3 + px^2 + qx + r = 0$ , find the equation whose roots are  $\alpha^2$ ,  $\beta^2$  and  $\gamma^2$ .

(f) Sketch the region in the complex plane where both the inequalities 
$$|z-2-2i| < 2$$
 and  $0 < \arg(z-2-2i) < \frac{\pi}{4}$  hold true simultaneously.

Find  $\int \frac{1}{8+5\sin x} dx$ . (a)

- 2
- The diagram below shows the ellipse which has equation  $\frac{x^2}{4} + \frac{y^2}{9} = 1$ . The point (b)

 $P(2\cos\theta, 3\sin\theta)$ , where  $\theta$  is the axillary angle, lies on the ellipse. The ellipse meets the y -axis at the points A and B. The tangents to the ellipse at A and B meet the tangent at Pat the points C and D respectively.



NOT TO

- (i) Find the eccentricity, coordinates of the foci and the equation of the directricies.
- 3

2

- (ii) Show that the equation of the tangent to the ellipse at P is  $2y\sin\theta + 3x\cos\theta = 6$ .
- (iii) Find the numerical value of  $AC \times BD$ .

3

(c) For every integer  $n \ge 0$ , let  $I_n = \int_0^{\frac{\pi}{6}} \sec^n x \, dx$ .

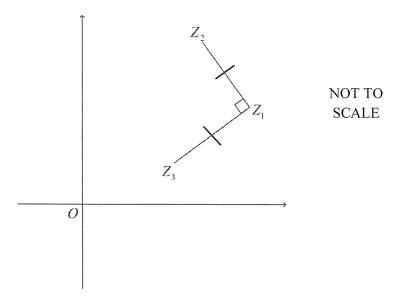
3

Show that for  $n \ge 2$ ,  $(n-1)I_n = \frac{2^{n-2}}{\left(\sqrt{3}\right)^{n-1}} + (n-2)I_{n-2}$ .

Question 12 continues on page 9

## Question 12 (continued)

(d)



2

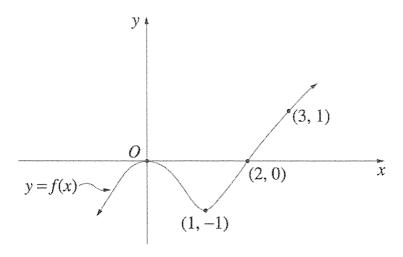
On the Argand diagram above, the point  $Z_1$  represents the complex number  $z_1$  and the point  $Z_2$  represents the complex number  $z_2$ . The point  $Z_2$  is rotated about  $Z_1$  through a right angle in the positive direction to take up the position  $Z_3$ , representing the complex number  $z_3$ .

Show that  $z_3 = (1-i)z_1 + iz_2$ .

## **End of Question 12**

## Question 13 (15 marks) Start a new writing booklet

(a) The diagram below shows the graph of y = f(x).



Draw separate one-third page sketches of the graphs of the following:

(i) 
$$y = \frac{1}{f(x)}$$
.

(ii) 
$$y = |f(x)|$$
.

(iii) 
$$y = \ln(f(x))$$
.

(b) (i) By using De Moivre's Theorem, show that  $\cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^2 \theta$  and  $\sin 3\theta = 3\cos^2 \theta \sin \theta - \sin^3 \theta$ .

(ii) Hence show that 
$$\tan 3\theta = \frac{3t - t^3}{1 - 3t^2}$$
, where  $t = \tan \theta$ .

(iii) Hence find the general solutions of the equation 
$$3 \tan \theta - \tan^3 \theta = 0$$

(c) (i) Find the five roots of the equation  $z^5 = 1$ 

(ii) Show that 
$$z^5 - 1 = (z - 1)\left(z^2 - 2z\cos\frac{2\pi}{5} + 1\right)\left(z^2 - 2z\cos\frac{4\pi}{5} + 1\right)$$
.

(iii) Hence show that 
$$\cos \frac{2\pi}{5} + \cos \frac{4\pi}{5} = -\frac{1}{2}$$

(a) Find 
$$\int \frac{x+3}{x^3+x^2+x+1} dx$$
.

- (b) The base of a solid is the circle  $x^2 + y^2 = 36$ . Find the volume of the solid if every section perpendicular to the x-axis is a square where one side of the square is completely laid in the base of the solid.
- (c) A parachutist of mass m falls to the ground from a plane. Air resistance is proportional to  $mv^2$ , where v is his speed and g is acceleration due to gravity. Take downwards as being the positive direction, and the point where the parachutist jumps out the plane as the origin of displacement, x.
  - (i) Deduce that  $\frac{d}{dx}(v^2) = 2g 2kv^2$ , where k is the constant of proportionality.
  - (ii) Show that  $v^2 = \frac{g}{k} \frac{g}{k}e^{-2kx}$ , satisfies the differential equation in part (i).
  - (iii) Find an expression for the terminal speed of the parachutist during his free-fall.
- (d) Let  $f(x) = 3x^5 10x^3 + 16x$ .
  - (i) Show that  $f'(x) \ge 1$  for all real x.
  - (ii) For what values of x is f''(x) > 0.
  - (iii) Sketch the graph of y = f(x), clearly indicating any turning points and points of inflexion.

(a) Consider the function  $f(u) = \sin^{-1} u - \sqrt{1 - u^2}$ , with restricted domain 0 < u < 1.

2

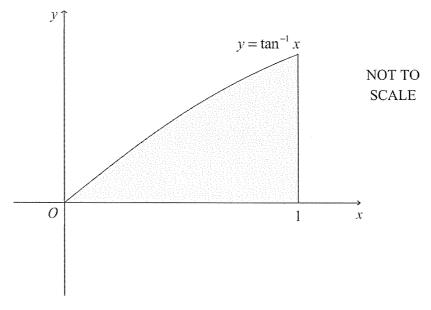
1

4

- (i) Show that  $f'(u) = \sqrt{\frac{1+u}{1-u}}$ .
- (ii) Hence, given that  $\alpha$  is in the domain, show that

$$\int_{0}^{\alpha} \left( \frac{1+u}{1-u} \right)^{\frac{1}{2}} du = \sin^{-1} \alpha - \sqrt{1-\alpha^{2}} + 1$$

(b) The region bounded by the curve  $y = \tan^{-1} x$  and the x axis between x = 0 and x = 1 is rotated through one complete revolution about x = 1. A diagram of the region to be rotated is shown below.

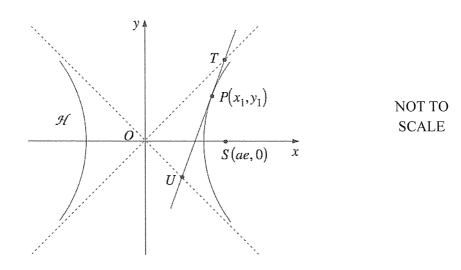


- (i) Use the method of cylindrical shells to show that the volume V of the solid formed is given by  $V = 2\pi \int_0^1 (1-x) \tan^{-1} x \, dx$ .
- (ii) Hence find the volume V in simplest exact form.

## Question 15 continues on page 13

## Question 15 (continued)

(c) The point S(ae,0) is a focus on the hyperbola  $H: x^2 - y^2 = a^2$ . The tangent to the hyperbola at a point  $P(x_1, y_1)$  meets the asymptotes of H at T and U, as shown in the diagram below.



(i) Show that the equation of the tangent TU is  $x_1x - y_1y = a^2$ .

2

(ii) Show that the gradient of SU is  $\frac{a}{e(x_1 + y_1) - a}$ .

2

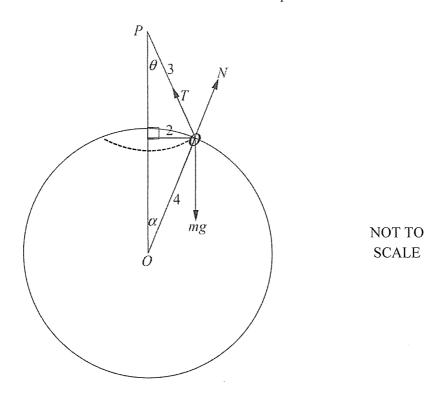
(iii) Let  $\angle UST = \theta$ . Show that  $\tan \theta = -1$ .

3

**End of Question 15** 

#### Question 16 (15 marks) Start a new writing booklet

(a) A particle of mass 5 kg at the end of a string 3 metres long is suspended from a point P vertically above the highest point of a smooth sphere of radius 4 metres. It describes a horizontal circle of radius 2 metres on the surface of the sphere.



Three forces act on the particle: the tension force F of the string, the normal reaction force N to the surface of the sphere, and the gravitational force mg. Take g, the acceleration due to gravity, as 10 ms<sup>-2</sup>. The angular velocity of the particle moving in uniform circular motion is 1 radian per second.

- By resolving the forces horizontally and vertically on a diagram, show that (i) 2  $\frac{T\sqrt{5}}{3} + \frac{N\sqrt{3}}{2} = 50$  and  $\frac{2T}{3} - \frac{N}{2} = 10$ .
- Find, correct to one decimal place: (ii)
  - $(\alpha)$  the tension in the string.

1

1

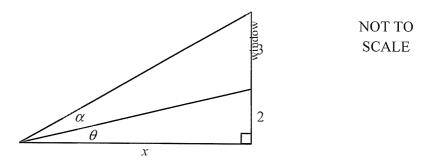
 $(\beta)$  The force exerted on the sphere.

(iii) Find the angular velocity that will ensure there is no force exerted on the sphere. 1

Question 16 continues on page 15

## Question 16 (continued)

(b) The base of a stained glass window 3 metres high is 2 metres above the eye-level of an observer who is x metres from the base of the wall which is supporting the window.  $\alpha$  is the viewing angle at eye level (i.e. the difference between the angles of elevation of the top and bottom of the window, as seen by the observer)



3

- (i) Show that  $\alpha = \tan^{-1} \left( \frac{3x}{x^2 + 10} \right)$ .
- (ii) Hence find how far should the observer stand from the wall for the viewing angle to be greatest.
- (c) Given that  $f(x) = x^6 + 4x^5 3x^4 8x^3 + 35x^2 60x 225$  has zeroes at  $x = \pm \sqrt{5}$  and a double zero, factorise f(x) over the:
  - (i) real field.
  - (ii) complex field.

**End of Paper** 

**BLANK PAGE**