HORNSBY GIRLS HIGH SCHOOL

2011 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading Time 5 minutes
- Working Time 3 hours
- o Write using a black or blue pen
- o Approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown for every question
- Begin each question in a new booklet

Total marks (120)

- Attempt Questions 1 8
- o All questions are of equal value

BLANK PAGE

Total Marks

Attempt Questions 1–8

All Questions are of equal value

Begin each question in a new booklet, writing your student number and question number in the boxes indicated. Extra writing booklets are available.

Question 1 (15 marks) Use a SEPARATE writing booklet.

Marks

2

(a) Find
$$\int \frac{x^2}{\sqrt{8-x^3}} dx$$
.

(b) By completing the square, find $\int \frac{dx}{x^2 - 8x + 20}$.

(c) Evaluate
$$\int_0^{\pi} x \cos x \, dx$$
.

(d) (i) Show that
$$\frac{2}{x^3 + x^2 + x + 1} = \frac{1}{x+1} - \frac{x}{x^2 + 1} + \frac{1}{x^2 + 1}$$
.

(ii) Hence, or otherwise, show
$$\int_{\frac{1}{2}}^{2} \frac{2}{x^3 + x^2 + x + 1} = \tan^{-1} 2 - \tan^{-1} \left(\frac{1}{2}\right).$$
 3

(e) Using the substitution
$$x = \tan \theta$$
, or otherwise, show
$$\int_{1}^{\sqrt{3}} \frac{1}{x^{2}\sqrt{1+x^{2}}} dx = \sqrt{2} - \frac{2}{\sqrt{3}}.$$

Question 2 (15 marks) Use a SEPARATE writing booklet.

Marks

- (a) Write i^7 in the form x + iy where x and y are real.
- (b) Let z = 2 + 2i and w = 2 i. Find in the form x + iy, where x and y are real,
 - (i) $z\overline{w}$

1

(ii) $\frac{8}{z}$

1

- (c) It is given that 1+i is a root of $P(z) = 2z^3 3z^2 + rz + s$, where r and s are real.
 - (i) Explain why 1-i is also a root of the equation.

1

(ii) Factorise P(z) over the real field.

2

(d) Find all the solutions of $z^4 = 16$. Express your solutions in the modulus-argument form.

2

(e) Sketch the region in the complex plane where the inequalities $|z - \overline{z}| \le 2$ and $|z - i| \le 4$ hold.

3

(f) (i) Prove, by Mathematical Induction, that for all integers n, $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$

3

(ii) Hence, find an expression for $\cos 3\theta$.

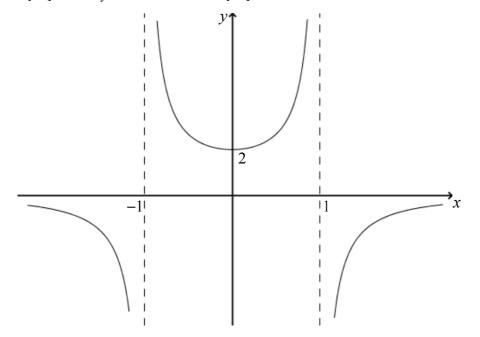
1

Question 3 (15 marks) Use a SEPARATE writing booklet.

Marks

NOT TO SCALE

(a) The diagram shows the graph of y = f(x). The graph has a horizontal asymptote at y = 0 and vertical asymptotes at $x = \pm 1$.



Draw neat separate one-third page sketches of the graphs of the following:

(i)
$$y = \frac{1}{f(x)}$$

2

(ii)
$$y = f(x) + |f(x)|$$

2

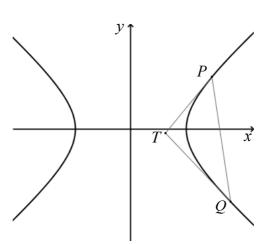
(iii)
$$y = e^{f(x)}$$

2

Question 3 continues on page 6

Question 3 (continued)

(b)



NOT TO SCALE

The points $P(x_1, y_1)$ and $Q(x_2, y_2)$ lie on the right branch of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. The tangents at P and Q meet at $T(x_0, y_0)$.

(i) Show the equation of the tangent at P is
$$\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1$$

(ii) Hence show the equation of the chord of contact is
$$\frac{xx_0}{a^2} - \frac{yy_0}{b^2} = 1$$
.

- (iii) The chord PQ passes through the focus S(ae, 0) where e is the eccentricity of the hyperbola. Prove T lies on the directrix of the parabola.
- (c) Let α , β , γ be the zeros of the polynomial $P(x) = 3x^3 + 7x^2 + 11x + 51$.

(i) Find
$$\alpha^2 \beta \gamma + \alpha \beta^2 \gamma + \alpha \beta \gamma^2$$
.

(ii) Find
$$\alpha^2 + \beta^2 + \gamma^2$$
.

(iii) Using part (ii), or otherwise, determine how many zeros of P(x) are real.

Justify your answer.

Question 4 (15 marks) Use a SEPARATE writing booklet.

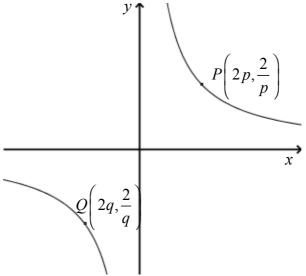
Marks

(a) A solid of height 2 metres rests on a horizontal surface.

Every horizontal cross-section of the solid, *x* metres above the surface,

3

- is a square of side $\sqrt{3x+1}$ metres.
- Find the volume of the solid.
- (b) Consider the rectangular hyperbola xy = 4, with points P and Q on different branches of the hyperbola



NOT TO SCALE

- (i) Prove that the equation of the normal to xy = 4at the point $P\left(2p, \frac{2}{p}\right)$ is $py p^3x = 2(1 p^4)$.
- (ii) If this normal meets the hyperbola again at $Q\left(2q, \frac{2}{q}\right)$, prove that $q = \frac{-1}{p^3}$.
- (iii) Hence, show that there exists only one chord of the hyperbola which is normal to the hyperbola at P and Q, and find its equation.
- (c) The equation $x^3 + 3x + 2 = 0$ has roots α , β and γ .
 - (i) Find the polynomial whose roots are α^2 , β^2 and γ^2 .

2

(ii) Hence, or otherwise, find the value of $\alpha^3 + \beta^3 + \gamma^3$.

2

Question 5 (15 marks) Use a SEPARATE writing booklet.

Marks

(a) Let w be a complex root of unity (w is solution of $z^3 - 1 = 0$).

(i) Show that
$$(z-1)(z^2+z+1)=z^3-1$$
.

(ii) Explain why
$$w^2 + w + 1 = 0$$
.

(iii) Hence, other otherwise, show that
$$(1-w)(1-w^2)(1-w^4)(1-w^8) = 9$$

(b) Consider $I = \int_1^\infty \frac{1}{x\sqrt{1+x^2}} dx$.

(i) By using a suitable substitution, show that
$$I = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{\sin \theta} d\theta$$
.

(c) (i) Find real numbers,
$$a$$
 and b , such that
$$x^4 + x^3 + x^2 + x + 1 = (x^2 + ax + 1)(x^2 + bx + 1).$$

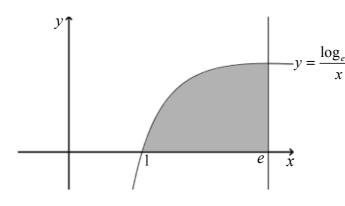
(ii) Given that
$$x = \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}$$
 is a solution of $x^4 + x^3 + x^2 + x + 1 = 0$, find the exact value of $\cos \frac{2\pi}{5}$.

Question 6 (15 marks) Use a SEPERATE writing booklet.

Marks

4

(a) Use the method of cylindrical shells to find the volume of the solid formed when the shaded region bounded by y = 0, $y = \frac{\log_e x}{x}$ and x = e is rotated about the y-axis.



NOT TO SCALE

(b) (i) Show that
$$\sin(\alpha + \beta) + \sin(\alpha - \beta) = 2\sin\alpha\cos\beta$$
.

1

3

(ii) Hence, or otherwise, solve the equation $\sin \theta + \sin 2\theta + \sin 3\theta + \sin 4\theta = 0$ for $0 \le \theta \le 2\pi$.

2

(c) A stone is projected vertically upwards in the air from a point h metres above the ground at a speed u and experiences a resistance equal to mkv^2 , where m is the mass of the stone, v is the speed after time t and k is a constant.

3

By considering the forces acting on the stone, show that the maximum height, H, the stone reaches above the ground is given by $H = h + \frac{1}{2k} \ln \left(1 + \frac{ku^2}{g} \right)$, where g is acceleration due to gravity

(d) A group of *n* people are to be seated around a circular table. Find the number of possible arrangements if 3 particular people are to sit together.

2

(e) Show that ${}^{n+2}C_r = {}^nC_r + 2{}^nC_{r-1} + {}^nC_{r-2}$

2

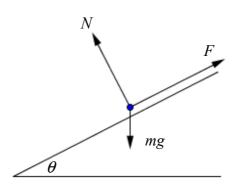
Question 7 (12 marks) Use a SEPARATE writing booklet.

Marks

2

2

(a)



A particle of mass m is lying on an inclined plane and does not move. The plane is at an angle θ to the horizontal. The particle is subject to a gravitational force mg, a normal reaction force N, and a frictional force F parallel to the plane, as shown in the diagram above.

By resolving the forces acting on the particle parallel and perpendicular to the plane, find an expression for $\frac{F}{N}$ in terms of θ .

- (b) The polynomial $P(x) = x^4 4x^3 + 3x^2 14x + 10$ has roots a + ib, a 2ib, where a and b are real.
 - (i) Show that a = 1, and hence find the value(s) of b.
 - (ii) Hence, factorise P(x) over the rational field.
- (c) (i) If $I_n = \int_0^{\frac{\pi}{2}} \cos^n x \, dx$, then show that $I_n = \frac{n-1}{n} I_{n-2}$.
 - (ii) Hence, evaluate $\int_0^{\frac{\pi}{2}} \cos^5 x \, dx$.
- (d) Use Mathematical Induction to prove that for integer values of $n \ge 1$ $1 \times 1! + 2 \times 2! + 3 \times 3! + ... + n \times n! = (n+1)! - 1$

Question 8 (15 marks) Use a SEPARATE writing booklet.

Marks

- (a) The function y = f(x) is defined by $f(x) = \sqrt{3 \sqrt{x}}$
 - (i) State the domain of the function f(x).

1

(ii) Show that y = f(x) is a decreasing function and determine the range of y = f(x).

2

(iii) Sketch the graph of y = f(x) for the domain and range determined above.

1

2

(iv) Prove that $\int_0^9 \sqrt{3 - \sqrt{x}} dx = \frac{24\sqrt{3}}{5}$

(b) Show that $\frac{d}{du}(\sec u + \tan u) = \sec u(\sec u + \tan u)$

2

(c) Consider $f(x) = \cos \frac{x}{2}$.

2

2

(i) On the same set of axes, sketch the graph of y = f(x), and hence the graph of $y = \frac{1}{f(x)}$ for the domain $0 \le x \le 2\pi$.

3

(ii) By considering part (b), find the area bounded by the curve $y = \frac{1}{f(x)}$, the x- axis and the ordinates $x = \frac{\pi}{3}$ and $x = \frac{\pi}{2}$, leaving your answer exact.

(iii) The solid bounded by the curve $y = \frac{1}{f(x)}$, the x – axis and the ordinates

2

 $x = \frac{\pi}{3}$ and $x = \frac{\pi}{2}$ is rotated about the y-axis.

By using the method of annular discs, find the volume as a **definite integral**.

DO NOT EVALUATE THIS INTEGRAL.