HORNSBY GIRLS' HIGH SCHOOL

2008 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- o Reading Time 5 minutes
- Working Time 3 hours
- Write using a black or blue pen
- Approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown for every question
- Begin each question on a fresh sheet of paper

Total marks (120)

- Attempt Questions 1 8
- o All questions are of equal value

BLANK PAGE

Total Marks - 120

Attempt Questions 1 – 8 All Questions are of equal value

Begin each question on a NEW SHEET of paper, writing your student number and question number at the top of the page. Extra paper is available.

Question 1 (15 marks) Use a SEPARATE sheet of paper. M		Marks
(a)	Find $\int \frac{dx}{x^2 - 4x + 40}$	2
(b)	Evaluate $\int_{0}^{2} x^{3} e^{x^{2}} dx.$	3
(c)	Find $\int \sin^3 x dx$	2
(d)	Evaluate $\int_0^1 \frac{x}{\sqrt{4-x}} dx$	3
(e)	(i) Find the real numbers a , b and c such that $\frac{3x^2 + 2x + 11}{\left(x^2 + 3\right)\left(1 - x\right)} = \frac{ax + b}{x^2 + 3} + \frac{c}{1 - x}.$	3

Question 2 (15 marks) Use a SEPARATE sheet of paper.

Marks

(a) Given z is a complex number such that z = 1 + i

(i) Write z in mod-arg form

2

(ii) Evaluate z^{12}

2

(b) If $P(z) = z^4 - 30z^2 + 289$

(i) Show that z = 4 + i is a zero of P(z)

2

(ii) Find all zeros of P(z) over the complex field

5

(c) P(z) is a point on the argand diagram such that

4

$$\arg\frac{z-i}{z+2} = \frac{\pi}{2}$$

Draw and describe the locus of P(z).

Question 3 (15 marks) Use a SEPARATE sheet of paper.

Marks

(a) The diagram below is a sketch of the function y = f(x)

On separate diagrams sketch

(i)
$$y = |f(x)|$$

2

(ii)
$$y = f(|x|)$$

1

3

(b) The graph below represents the derivative f'(x) of a certain function f(x). Given that $f'(x) \to 0$ as $x \to \infty$, f(0) = 0 and f(1) < 0, sketch the graph of f(x), noting the behaviour as $x \to \infty$.

(c) (i) Sketch the curve $y = \frac{x^3 + 4}{x^2}$, showing any stationary points and asymptotic behaviour.

2

(ii) Hence or otherwise, deduce the values of k, for which the equation $x^3 - kx^2 + 4 = 0$ may have one real root.

1

(d) (i) If x = a is a multiple root of the polynomial equation P(x) such that P(x) = 0, prove that P'(a) = 0.

3

(ii) Find all roots of $P(x) = 16x^3 - 12x^2 + 1$ given that two of the roots are equal.

3

Question 4 (15 marks) Use a SEPARATE sheet of paper.

Marks

(a) An ellipse has parametric equations $x = \sqrt{2} \cos \theta$ and $y = 3 \sin \theta$. Find the Cartesian equation and the eccentricity of the ellipse. 2

(b)

The ellipse with equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ shown in the diagram above has a tangent at the point $P(a\cos\theta, b\sin\theta)$. The tangent cuts the x-axis at T and the y-axis at R.

(i) Show that the equation of the tangent at the point P is $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1.$

2

(ii) If T is the point of intersection between the tangent at point P and one of the directrices of the ellipse, show that $\cos \theta = e$.

3

(iii) Hence find the angle that the focal chord through P makes with the x-axis.

1

(iv) Using similar triangles or otherwise, show that $RP = e^2 RT$.

3

(c) The area between the curve $y = \ln(x+1)$ and the x-axis, between x = 0 and x = 1 is rotated about the y-axis. Find the volume of the solid of revolution formed using the method of cylindrical shells.

4

Question 5 (15 marks) Use a SEPARATE sheet of paper.

Marks

(a) (i) Write down the value of $\int_{a}^{a} \sqrt{a^2 - x^2} dx$.

1

(ii) Explain why $\int_{a}^{a} x \sqrt{a^2 - x^2} dx$ is equal to zero.

1

(b)

The base of a solid is the semi-circular region in the x - y plane with the straight edge running from the point (0,-1) to the point (0,1) and the point (1,0) on the curved edge of the semicircle.

Each cross-section perpendicular to the x-axis is an isosceles triangle with each of the two equal side lengths three quarters the length of the third side.

- (i) Show that the area of the triangular cross-section at x = a is $\frac{\sqrt{5}}{2}(1-a^2)$.
- (ii) Hence find the volume of the solid.
- (c) The point $T\left(ct, \frac{c}{t}\right)$ lies on the hyperbola $xy = c^2$. The tangent at T meets the x-axis at P and the y-axis at Q. The normal at T meets the line y=x at R.
 - (i) Prove that the tangent at T has equation $x + t^2y = 2ct$.

2

(ii) Find the coordinates of P and Q.

2

(iii) Write down the equation of the normal at T.

1

(iv) Show that the x coordinate of R is $x = \frac{c}{t}(t^2 + 1)$.

2

(v) Prove that $\triangle PQR$ is isosceles.

2

Question 6 (15 marks) Use a SEPARATE sheet of paper.

Marks

2

(a) The equation $x^3 + 2x - 1 = 0$ has roots α, β, γ . Find a polynomial equation in x whose roots are:

(i)
$$-\alpha, -\beta, -\gamma$$

(ii)
$$\alpha^2, \beta^2, \gamma^2$$

(iii)
$$\pm \alpha, \pm \beta, \pm \gamma$$
 2

(b) Find a and b if
$$(1+i)$$
 is a root of $x^2 + (a+2i)x + 5 - ib = 0$

(c) A body M, of mass 650g, is fixed to point O by a light wire 0.2m long. The body rotates in a horizontal plane at 72 revolutions per minute. Taking $g = 10m/s^2$,

(i) Prove that
$$\tan \theta = \frac{72\pi^2 \sin \theta}{625}$$
.

- (ii) Find θ to the nearest minute.
- (iii) The mass of the body is to be doubled but the speed of rotation is to remain the same. What will happen to the value of θ ?

Question 7 (15 marks) Use a SEPARATE sheet of paper.

Marks

4

(a) The great pyramid of Cheops at Giza in Egypt is approximately 150 m high and its base is a square with an area of approximately 5 hectares.

- (i) Show that the area of the cross section A(y), at y is given by $A(y) = (5 \times 10^4) \times \left(\frac{h-y}{h}\right)^2$
- (ii) Find the volume of the pyramid by using the slicing technique.
- (b) A particle of mass 1 kg is projected vertically upwards with an initial velocity of 100 m/s in a medium in which the resistance force is equal to 0.01 times the square of the body's velocity, i.e. $0.01v^2$. Use $g = 10m/s^2$.
 - (i) Show that the maximum height reached by the particle is $50\log_e 11$ metres.
 - (ii) Will the downward velocity of the particle on its return to the point of projection be greater than, less than, or equal to 100m/s?

 Justify your answer.
 - (iii) Calculate the actual downward velocity of the particle on its return to the point of projection.

Question 8 (15 marks) Use a SEPARATE sheet of paper.

Marks

(a) Use the following identity to answer the following questions.

$$\tan 4\theta = \frac{4\tan\theta - 4\tan^3\theta}{1 - 6\tan^2\theta + \tan^4\theta}.$$

(i) Solve $x^4 + 4\sqrt{3}x^3 - 6x^2 - 4\sqrt{3}x + 1 = 0$.

3

(ii) Hence show that

(1)
$$\tan\frac{\pi}{24} + \tan\frac{7\pi}{24} + 4\sqrt{3} = \tan\frac{5\pi}{24} + \tan\frac{11\pi}{24}$$

1

(2)
$$\tan \frac{\pi}{24} \tan \frac{5\pi}{24} = \cot \frac{7\pi}{24} \cot \frac{11\pi}{24}$$

1

(iii) Find the polynomial of least degree that has zeros

3

$$\left(\cot\frac{\pi}{24}\right)^2, \left(\cot\frac{7\pi}{24}\right)^2, \left(\cot\frac{13\pi}{24}\right)^2, \left(\cot\frac{19\pi}{24}\right)^2.$$

(b) Let $I_n = \int_0^1 x(x^2 - 1)^n dx$ for n = 0,1,2,...

(i) Use integration by parts to show that

3

$$I_n = \frac{-n}{n+1} I_{n-1} \text{ for } n \ge 1.$$

(ii) Hence or otherwise show that

2

$$I_n = \frac{\left(-1\right)^n}{2\left(n+1\right)} \text{ for } n \ge 0.$$

(iii) Explain why $I_{2n} > I_{2n+1}$ for $n \ge 0$

1

(iv) Explain whether or not $I_n > I_{n+2}$ for all $n \ge 0$.

1

End of Examination

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = \frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE: $\ln x = \log_e x$, x > 0