

Homebush Boys' High School

TRIAL HIGHER SCHOOL CERTIFICATE

2012

Mathematics **EXTENSION 2**

Time allowed - Three hours plus 5 minutes reading time

Name:	
Carlo Manager Comp.	The state of the s

General Instructions:

- Write using black or blue pen
- All necessary working should be Shown for every question
- Board approved calculators may be used
- A multiple choice answer sheet is provided for the multiple choice section
- Begin each question, 11-16 in a new booklet
- Attempt all questions
- All questions 11-16 are of equal value
- Total marks (100)

Section I

Questions 1-10 (1mark for each question)

Read each question and choose an answer A, B, C or D. Record your answer on the Answer Sheet provided. Allow about 15 minutes for this section

- The roots of the polynomial $x^3 5x + 4 = 0$ are α , β , and γ . 1. What is the value of $\alpha^2 + \beta^2 + \gamma^2$?
 - A) 25

D)-5

- Evaluate $\int_{0}^{\frac{\pi}{4}} x \sec^2 x dx$. 2.
 - A) $\frac{\pi}{4} \frac{1}{2} \ln 2$ B) $\frac{\pi}{4} + \frac{1}{2} \ln 2$ C) $\frac{\pi}{4} + 2 \ln \sqrt{2}$

- The complex number z satisfies the inequations 3. |z + 1 + i| < 2 and $Im(z) \ge Re(z)$.

Which of the following shows the shaded region in the Argand diagram that satisfies these inequations?

The foci and the directrices of the ellipse with equation $4x^2 + y^2 = 4$ are

A)
$$(\pm\sqrt{3}, 0)$$
 and $x = \pm \frac{4\sqrt{3}}{3}$
B) $(0, \pm\sqrt{3})$ and $y = \pm \frac{4\sqrt{3}}{3}$
C) $(0, \pm\sqrt{3})$ and $x = \pm \frac{4\sqrt{3}}{3}$
D) $(\pm\sqrt{3}, 0)$ and $y = \pm \frac{4\sqrt{3}}{3}$

B)
$$(0, \pm \sqrt{3})$$
 and $y = \pm \frac{4\sqrt{3}}{3}$

C)
$$(0, \pm \sqrt{3})$$
 and $x = \pm \frac{4\sqrt{3}}{3}$

D)
$$(\pm \sqrt{3}, 0)$$
 and $y = \pm \frac{4\sqrt{3}}{3}$

 $\int (\tan^3 2x + \tan 2x) dx$ can be expressed as 5.

A)
$$\frac{1}{4}\tan^4 2x + \frac{1}{2}\sec^2 2x + c$$

B)
$$2 \tan^2 2x + c$$

C)
$$\frac{1}{4} \tan^2 2x + c$$

D)
$$\frac{1}{2} \tan^2 2x + c$$

The graph of y = f(x) is shown. 6.

Which of these graphs could be the graph of $y = \ln (f(x))$

D)

P(z) is a polynomial of degree 5 with $P(z) = P(\overline{z})$. 7.

Which of the following statements must be false?

- A) All the roots can be real.
- B) Only four of the roots can be real.
- C) Only three of the roots can be real.
- D) Only one of the roots can be real.
- The complex number z lies on the curve |z (1 + i)| = 1. 8.

What is the minimum value of |z|?

- A) 1

- B) $\sqrt{2}$ C) $\sqrt{2} 1$ D) $\sqrt{2} + 1$
- Let $z^2 = \sqrt{2}i$, what is the value of z^{8n+4} ? 9.
- B) $(-2)^{8n+2}$ C) $(-2)^{6n+4}$
- D) 2^{2n+1}
- The point P represents the complex number ϕ where $\phi \overline{\phi} = 4$. 10.

Which of the points A, B, C, or D shown in the Argand diagram could represent the complex number $i\phi^{-1}$?

Section II

Question 11 – 16 (15 marks each)

Allow about 2 hours 45 minutes for this section

Question 11

MARKS

a) i) Find the numbers a and b such that

$$\frac{3x^2 + x}{(x+1)(x^2+1)} = \frac{a}{x+1} + \frac{2x+b}{x^2+1}$$

2

ii) Find $\int \frac{3x^2 + x}{(x+1)(x^2+1)} dx$

2

b) Use the substitution $t = \tan \frac{\theta}{2}$ to evaluate $\int_{0}^{\frac{\pi}{3}} \frac{1}{1 - \sin \theta} d\theta$

4

- c) Let $\alpha = \sqrt{3} i$ and $\beta = -\sqrt{3} + i$
 - i) Express α and β in modulus argument form.

2

ii) Show that α and β are roots of $z^6 + 64 = 0$

2

iii) Hence, or otherwise, factorise the polynomial $z^6 + 64$ in real quadratic factors.

- a) i) Find the two pairs of integers a and b such that $(a + ib)^2 = -9 + 40i$
 - ii) Hence, solve the quadratic equation $z^2 + 5iz 4 10i = 0$
- b) The polynomial $x^3 + ax^2 + bx + c = 0$ has roots α , β and $2(\alpha + \beta)$.
 - i) Show that $\alpha + \beta = -\frac{a}{3}$
 - ii) Show that $4a^3 + 27c = 18ab$
- c) The points A, B, C and D representing respectively the complex numbers $\sqrt{2} + \sqrt{6}i$, 2 + 2i, ω and ϕ lie on a circle with centre O.

- i) Find ω in the form x+iy, where x and y are real numbers.
- ii) Find the value of θ .
- The base of a solid is the region bounded the curve $y = \sec x$, the x axis between x = 0 and $x = \frac{\pi}{4}$.

Vertical cross sections of the solid taken parallel to the y axis are in the shape of a right angled triangle with its height equal to the square of its base.

Find the volume of the solid.

3

- a) Find the equation of the normal to the curve $2x^2 + xy + y^2 = 8$ at the point (-1, 3).
- b) The diagram shows the graph of the hyperbola $f(x) = \frac{x-6}{x-2}$.

The area bounded by the curve y = f(x), the y axis and the line y = 4 is rotated about the line y = 3 to form a solid.

Use the method of cylindrical shells to find the volume of the solid.

The tangents to the curve $xy = c^2$ at the points P (cp, $\frac{c}{p}$) and Q (cq, $\frac{c}{q}$) intersect at R. The chord PQ passes through the point A (0, 2c²).

i) Show that 2cpq = p + q.

- 2
- ii) Show that the equation of the tangent at P is $x + p^2 y = 2cp$.
- 2

iii) Find the locus of R as P and Q vary.

a) In the diagram ABCD is a cyclic quadrilateral.

AE is a perpendicular to the side CB produced and AF is the perpendicular to the sides DC.

G is a point on AF such that \angle GDF = \angle DAF.

DG produced meet BC at H.

i) Show that $\triangle AEB$ is similar to $\triangle AFD$.

2

ii) Show that the quadrilateral ABHG is cyclic.

3

b) In the diagram, PS is a perpendicular to the side QR in the Δ PQR.

Given that $\frac{PS}{SR} = \frac{QS}{PS}$, show that ΔQPR is right angled at P.

The point A (a cos θ , b sin θ) lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where S and S' are the foci.

The tangent at A intersects the y-axis at B and the normal at A intersects the y axis at C.

i) Show that the equation of the tangent and the normal at A are

 $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1.$ (equation of tangent)

 $\frac{ax}{\cos\theta} - \frac{by}{\sin\theta} = a^2 - b^2.$ (equation of normal)

ii) Use the result of Part (b) or otherwise to prove that ΔBSC is right angled at S.

3

3

iii) Show that $\angle ASB = \angle AS'B$.

2

7

a)

The points R and S lie on a circle with centre O and radius 1. The tangents to the circle at R and S meet at T. The lines OT and RS meet at U, and are perpendicular.

Show that $OU \times OT = 1$.

b)

The circle $(x-r)^2 + y^2 = r^2$, with centre Q(r,0) and radius r, lies inside the circle $x^2 + y^2 = 1$, with centre O and radius I. The point $P(r + r\cos\theta, r\sin\theta)$ lies on the inner circle, and P and O do not coincide. The tangent to the inner circle at P meets the outer circle at P and P are perpendicular.

- (i) Show that OT is parallel to QP.
- (ii) Show that the equation of RS is $x\cos\theta + y\sin\theta = r(1+\cos\theta)$.
- (iii) Find the length of OU.
- (iv) By using the result of part (a), show that T lies on the curve $r^2y^2 + 2rx = 1$.

c)

The parabola $x^2 = 4ay$ touches the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ at J, and cuts it at K and L. The midpoint of KL is M, and the line JM cuts the y axis at N, as shown on the diagram.

- (i) Find a quartic equation whose roots are the x coordinates of J, K, and L.
- (ii) Show that JN = NM.
- (iii) Hence show that the area of ΔJKN is one-quarter of the area of ΔJKL .

- Let $I_n = \int_0^{6} \sin^{2n} \theta \sec \theta \, d\theta$, where for $n \ge 1$.
 - i) Show that $I_n I_{n-1} = \frac{-1}{2^{2n-1}(2n-1)}$.

ii) Hence, show that

3

$$I_n = \frac{1}{2} \ln 3 - \sum_{k=1}^{n} \frac{1}{2^{2k-1}(2k-1)}$$
.

b) Consider the sequence

$$S_k = \frac{2}{3n+2} + \frac{2}{3n+4} + \frac{2}{3n+6} + \dots + \frac{2}{5n}$$
,

where n is a positive integer.

i) Show that $0 < S_k < \frac{2}{3}$.

ii) Given that $t < \theta < t + 2$, where t is a positive integer and θ is a real number.

Show that
$$\frac{2}{t+2} < \int\limits_t^{t+2} \frac{d\theta}{\theta} < \frac{2}{t}$$
.

iii) Show that $\ln\left(\frac{5n+2}{3n+2}\right) < S_k < \ln\frac{5}{3}$.

4

Hence, find the limit of S_k when $n \to +\infty$.